Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  permeability of porous medium
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The effect of a magnetic field dependent viscosity on a Soret driven ferro thermohaline convection in a rotating porous medium has been investigated using the linear stability analysis. The normal mode technique is applied. A wide range of values of the Soret parameter, magnetization parameter, the magnetic field dependent viscosity, Taylor number and the permeability of porous medium have been considered. A Brinkman model is used. Both stationary and oscillatory instabilities have been obtained. It is found that the system stabilizes only through oscillatory mode of instability. It is found that the magnetization parameter and the permeability of the porous medium destabilize the system and the Soret parameter, the magnetic field dependent viscosity and the Taylor number tend to stabilize the system. The results are presented numerically and graphically.
EN
Soret driven thermoconvective instability in multicomponent fluids has wide applications in heat and mass transfer. This paper deals with the theoretical investigation of the effect of rotation on a Soret-driven ferrothermohaline convection heated and soluted from below subjected to a transverse uniform magnetic field in the presence of dust particles saturating a porous medium. Brinkmann model is used. An exact solution is obtained for the case of two free boundaries. Both stationary and oscillatory instabilities are investigated using the linear stability analysis and normal mode technique. The oscillatory modes are introduced due to the presence of dust particles, the stable solute gradient and rotation and the oscillatory modes are not allowed in their absence. For the case of stationary convection, the non-buoyancy magnetization parameter, the dust particle parameter and large values of permeability of the porous medium destabilize the system. The soret coefficient, rotation and the stable solute gradient stabilize the system. The results are presented graphically.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.