Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pendulum tuned mass damper
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper constitutes the second part of the article Kinematically excited parametric vibration of a tall building model with a TMD. Part 1: numerical analyses (ACME, in press) by K. Majcher and Z. Wójcicki, which presents the results of theoretical research. This paper presents the experimental verification of those results. The experimental studies were carried out with the use of an especially designed physical model of a tall building, which rested on an earthquake simulator – a shaking table – created for this project. The simulator was used to generate several types of kinematic excitations: harmonic ones, superpositions of harmonic ones and, finally, ones generated on the basis of real seismograms. Vibrations were kinematically excited in the horizontal and vertical directions independently and simultaneously. The vertical component of the earthquake causes the pendulum suspension point to vibrate, thus exciting the pendulum parametrically. The theoretical study indicated a significant influence of this parametric excitation (parametric resonance) on the effectiveness of the Pendulum Tuned Mass Damper (PTMD). Therefore, the experimental analyses were especially focused on the parametric effects' impact on: the PTMD's ability to reduce the building's vibration, and the possibility of parametric resonance of the building due to parametric resonance of the PTMD.
EN
This paper undertakes to analyze the research problem of vibration of a tall building with a Pendulum Tuned Mass Damper (PTMD). The vibration of the building-damper system is due to kinematic excitation representing seismic load. It was assumed that during an earthquake the ground can move horizontally and vertically. An analysis of various earthquakes reveals that, sometimes, the vibration has comparable amplitudes in both these directions. It is usually the horizontal vibration that is catastrophic to structures. Vertical vibration is therefore often omitted. As this paper will show, in cases where the TMD model is a pendulum, the vertical ground motion can be transmitted through the building structure to the pendulum suspension point. In such cases, parametric resonance may occur in the system, which is especially dangerous as it amplifies vibration despite the presence of damping. Taking this phenomenon into consideration will make it possible to better secure the structure against earthquakes. As the teams carrying out theoretical and experimental analyses differed, the paper was purposely divided into two parts. In the first part, the idea was formulated and the MES model of the building-TMD system was created. The second part contains an experimental verification of the theoretical analyses.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.