Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pavement evenness
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Neural networks in diagnostics of concrete airfield pavements
EN
Concrete airfield pavement maintenance encompasses many complex problems, which are difficult to identify using traditional diagnostic methods. Artificial neural networks may prove useful in understanding and solving of such problems. The article presents the nature of neural networks and the possible fields of their application in analysis of processes occurring in airfield surface layers and base layers during service. The presented concepts include the use of neural networks in repair prediction, identification of causes of the observed phenomena and diagnostic predictions for future maintenance and service. The aim of the work is to apply artificial neural networks to modeling of maintenance processes, including prediction of pavement evenness. A neural network model was prepared for assessment of pavement evenness based on data obtained from real pavement sections. Research methodology and the obtained field results were described. The structure of the neural network was designed and verified. Conclusions were formulated regarding suitability of neural modeling for pavement evenness prediction. The proposed methodology may complement the methods currently used in pavement diagnostics.
PL
W dziedzinie utrzymania betonowych nawierzchni lotniskowych występuje wiele złożonych problemów trudnych do identyfikacji tradycyjnymi metodami diagnostycznymi. Do ich zrozumienia i rozwiązania mogą okazać się przydatne sztuczne sieci neuronowe. W pracy przedstawiono istotę sieci, jak również zakreślono obszary możliwych ich zastosowań do analizy zjawisk zachodzących w warstwie jezdnej nawierzchni lotniskowej i jej podbudowie na etapie użytkowania. Przedstawiono koncepcję zastosowania tego narzędzia w prognozowaniu napraw, ustaleniu przyczyn zaistniałych zjawisk oraz prognozy diagnostycznej związanej z dalszym procesem utrzymania i użytkowania. Celem pracy była aplikacja metody SSN do modelowania procesów utrzymaniowych, w tym przewidywania równości nawierzchni. Opracowano model neuronowy przeznaczony do oceny równości nawierzchni na podstawie danych uzyskanych z rzeczywistych odcinków nawierzchni. Przedstawiono metodykę badawczą i uzyskane wyniki terenowe. Zaprojektowano strukturę sieci i zweryfikowano uzyskany model neuronowy. Sformułowano wniosek dotyczący przydatności modelowania neuronowego do prognozowania równości nawierzchni. Zaproponowana metodyka może stanowić uzupełnienie w stosowanej diagnostyce nawierzchni.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.