Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  path tracking
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Autonomous vehicles are the most advanced intelligent vehicles and will play an important role in reducing traffic accidents, saving energy and reducing emission. Motion control for trajectory tracking is one of the core issues in the field of autonomous vehicle research. According to the characteristics of strong nonlinearity, uncertainty and changing longitudinal velocity for autonomous vehicles at high speed steering condition, the robust trajectory tracking control is studied. Firstly, the vehicle system models are established and the novel target longitudinal velocity planning is carried out. This velocity planning method can not only ensure that the autonomous vehicle operates in a strong nonlinear coupling state in bend, but also easy to be constructed. Then, taking the lateral location deviation minimizing to zero as the lateral control objective, a robust active disturbance rejection control path tracking controller is designed along with an extended state observer which can deal with the varying velocity and uncertain lateral disturbance effectively. Additionally, the feed for ward-feedback control method is adopted to control the total tire torque, which is distributed according to the steering characteristics of the vehicle for additional yaw moment to enhance vehicle handing stability. Finally, the robustness of the proposed controller is evaluated under velocity-varying condition and sudden lateral disturbance. The single-lane change maneuver and double-lane change maneuver under vary longitudinal velocity and different road adhesions are both simulated. The simulation results based on Matlab/Simulink show that the proposed controller can accurately observe the external disturbances and have good performance in trajectory tracking and handing stability. The maximum lateral error reduces by 0.18 meters compared with a vehicle that controlled by a feedback-feedforward path tracking controller in the single-lane change maneuver. The lateral deviation is still very small even in the double lane change case of abrupt curvature. It should be noted that our proposed control algorithm is simple and robust, thus provide great potential for engineering application.
EN
The development of advanced spatial-positioning and monitoring systems for medical monitoring and emergency response using RFID & Wi-Fi technologies is a large-scale research project being conducted at the ward W21C of Foothills Hospital, Calgary, Canada by University of Calgary. The scope of this project is to support real-time location tracking of medical equipments and personnel in hospital settings. In this context, we developed an innovative, interactive, decision-support medical system for tracking of personnel and high value medical equipments. The goal behind development of such a system is to provide a convenient, easy to use interface using existing technologies that allows to visualize and analyse clinical pathways and health care provider’s workflow pattern as well as to perform time motion studies and more advanced statistical pattern analysis. While achieving this goal, we aim to also fill the existing void of documentation and present to scientific community functional issues encountered along with their importance in success.
3
Content available remote Path tracking by the end-effector of a redundant manipulator
EN
This study deals with the problem of tracking a prescribed geometric path by the end-effector of a kinematically redundant manipulator at the control-loop level. During the robot motion, the control constraints resulting from the physical abilities of robot actuators are taken into account. The Lyapunov stability theory is used to derive the control scheme. The numerical simulation results carried out for a planar manipulator whose end-effector tracks a segment line in a two-dimensional work space, illustrate the trajectory performance of the proposed control scheme.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.