Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  passivation layer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Continuous development of stainless steel technology forced by the increase in the growing demands on the operating parameters of various stainless steel alloys, is the motivation for implementation of research for understanding the complexity of electrochemical processes ongoing on the surface of a material during various technological processes and during exploitation of the finished components. In this paper, the use of atomic force microscopy (AFM) is presented as a tool for observation of reconstruction process of passivation layers on the surface of previously electropolished stainless steel. For this purpose, a technique called nanoscratching was used, in which scratches are made on the surface of a material by means of diamond scanning probe, which violates the continuity of the passivation layer. Then, the dynamics of the process of reconstruction of that layer was assessed using continuous imaging of the scratched area in AFM semicontact mode. Studies of this type can be used to evaluate the impact of various factors on the spontaneous reconstruction of the passivation layer as well as possible susceptibility of the material on the course of corrosion processes initiated as a result of mechanical defects arising during operation of the material. By using the AFM, it was possible to observe changes in the depth of scratches with a subnanometer resolution. Obtained results proved that the presented AFM application allowed observation of the dynamics of passivation layer reconstruction process in a quantitative fashion, therefore it seems to be a very useful tool in the investigation of the impact of various conditions on this phenomenon. The results showed that changes in surface modification were occurring in a continuous manner. Changing dynamics of said process was presented. It should be underlined that no such experiments have been reported so far.
EN
Crosstalk propagation through silicon substrate is a serious limiting factor on the performance of the RF devices and circuits. In this work, substrate crosstalk into high resistivity silicon substrate is experimentally analyzed and the impact on the RF behavior of silicon-on-insulator (SOI) MOS transistors is discussed. The injection of a 10 V peak-to-peak single tone noise signal at a frequency of 3 MHz ( fnoise) generates two sideband tones of ?56 dBm separated by fnoise from the RF output signal of a partially depleted SOI MOSFET at 1 GHz and 4.1 dBm. The efficiency of the introduction of a trap-rich polysilicon layer located underneath the buried oxide (BOX) of the high resistivity (HR) SOI wafer in the reduction of the sideband noise tones is demonstrated. An equivalent circuit to model and analyze the generation of these sideband noise tones is proposed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.