Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  partition refinement
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Fast and Efficient Parallel Coarsest Refinement
EN
The process of merging two arbitrary partitions of a given finite set U of n elements is known as coarsest refinement. In the COARSEST REFINEMENT PROBLEM we are given two arbitrary partitions X, Y of the set U such that X = {X1, X2, ...,Xx} and Y = {Y1, Y2, ..., Yy}, and determine a new partition Z = {Z1, Z2, ..., Zz} such that each is a common non-empty subset of some Xa ∈ X and some Yb ∈ Y and |Z| is as small as possible. This article describes a resource-efficient parallel algorithm to solve this problem. More specifically, we show that a coarsest refinement can be computed in O(t(n) + log n) parallel time using max{nlogn, p(n)} processors, where t(n) denotes the running time of a parallel stable sorting algorithm that uses p(n) processors on an EREW PRAM. This result depends on t(n) and p(n). We give a table that shows the best known time and processor complexities for a parallel stable sorting algorithm. If the parallel stable sorting algorithms by Ajtai et al., Cole, and Leighton are used, the coarsest refinement can be computed in O(log n) parallel time using n processors on an EREW PRAM. On the other hand, if the parallel stable sorting algorithm by Bahig et al. is used, the coarsest refinement can be computed in O(lognlog(nlogn)) parallel time using nlogn processors on an EREW PRAM. In addition, we show that on, a RAM machine, our parallel algorithm runs as asymptotically efficient as the fastest known sequential algorithm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.