Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  particular solution
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A new hybrid finite element approach for three-dimensional elastic problems
EN
A new fundamental solution based finite element method (HFS-FEM) is presented for analyzing three-dimensional (3D) elastic problems with body forces in this paper. It begins with deriving formulations of 3D HFS-FEM for elastic problems without body force and then the body force term is handled by means of the method of particular solution and radial basis function approximation. In our analysis, the homogeneous solution is obtained using the proposed HFS-FEM and the particular solution associated with the body force is approximated by radial basis functions. Several standard tests and numerical examples are considered to assess the capability and performance of the proposed method and elements. It is found that, comparing with conventional FEM (ABAQUS), the proposed method can achieve higher accuracy and efficiency when same element meshes are used. It is also found that the elements associated with this method are not very sensitive to mesh distortion and can be employed for problems involving nearly incompressible materials. This new method seems to be promising to deal with problems involving generalized body force, complex geometry, stress concentration and multi-materials.
EN
This paper presents the method of particular solution for solving the Riccati equation and linear homogenous equations of second and third order, as well as its certain application to linear homogenous equations of n-th order. The conditions of effective integrability for equations (0.1) and (0.2) are expressed in symbolic (operator) form and also for equation (0.3) in fully expanded form. There have been proved three theorems which state the following: for any subclass of differential equations of the form (0.1), (0.2), (0.3), if there are known, respectively: a particular solution y0, a particular solution u0, two linearly independent particular solutions u1, u2, then it is possible to construct superclasses of differential equations of the given class, using classes cited in [6, 7, 8, 9]. Moreover, one may obtain their effectively integrable generalizations. Numerous examples provided illustrate the above results. The article presents also a practical way of applying the method of particular solution to linear equations of n-th order. This method enables us to integrate more general equations than those described in [4, 5, 14] of the form (0.1), (0.2), (0.3), (0.4) for which the particular solutions are cited therein.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.