Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  particle deposition
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Dust generation and its dispersion has been the major concern in ambient air quality in mines. This paper focuses on generation and dispersion of particles during mining operations. Atmospheric pollution in mines areas of Ouenza has become a serious problem. The goal of this study is therefore to review the air pollutants of the approach by discussing studies applying mass conservation model methods. To support these theoretical calculations, field measurements will be performed to determine the air quality in the region concerned and to develop a program to prevent excessive air pollution that threatens human health and the environment. For the treatment of the results, we used regression analysis, assuming that the relationship between the pollutant concentration Ci and weight of various Pi sampling stations in the mine of Ouenza is a straight line following a linear tendency. Validation of the results from this study for urban air pollution would be highly beneficial.
EN
The random sequential adsorption (RSA) approach was used to analyse adsorption kinetics of charged spheres at charged surfaces precovered with smaller sized, likely charged particles. The algorithm of M. R. Oberholzer et al. [20] was exploited to simulate adsorption allowing electrostatic interaction in three dimensions, that is, particle-particle and particle-surface interactions during the approach of a particle to the substrate. The calculation of interaction energies in the model was achieved with the aid of a many-body superposition approximation. The effective hard particle approximation was used for determination of corresponding simpler systems of particles, namely: the system of hard spheres, the system of particles with perfect sink model of particle-interface interaction, and the system of hard discs at equilibrium. Numerical simulations were performed to determine adsorption kinetics of larger particles for various surface concentration of smaller particles. It was found that in the limit of low surface coverage the numerical results were in a reasonable agreement with the formula stemming from the scaled particle theory with the modifications for the sphere-sphere geometry and electrostatic interaction. The results indicate that large particle-substrate attractive interaction significantly reduces the kinetic barrier to the large, charged particle adsorption at a surface precovered with small, likely charged particles.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.