Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  partial supervision
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper describes a technique of fuzzy clustering with partial supervision. Pedrycz's algorithm of fuzzy clustering and a fuzzy clustering method based on the concept of allotment among fuzzy clusters form the basis of the technique. Basic ideas of both methods are considered and a methodology of fuzzy clustering with partial supervision is proposed in the paper. The application of the methodology is illustrated on the example of Anderson's Iris data. Preliminary conclusions are formulated.
2
Content available remote Breast cancer diagnosis via fuzzy clustering with partial supervision
EN
A new clustering method of fuzzy c-myriad clustering with partial supervision is presented in this paper. The proposed method has been applied to breast cancer diagnosis data obtainted from the University of Wisconsin. The data set contains 699 cases of breast cancer, with each instance described by 10 features.
EN
While a genuine abundance of biomedical data available nowadays becomes a genuine blessing, it also posses a lot of challenges. The two fundamental and commonly occurring directions in data analysis deal with its supervised or unsupervised pursuits. Our conjecture is that in the area of biomedical data processing and understanding where we encounter a genuine diversity of patterns, problem descriptions and design objectives, this type of dichotomy is neither ideal nor the most productive. In particular, the limitations of such taxonomy become profoundly evident in the context of unsupervised learning. Clustering (being usually regarded as a synonym of unsupervised data analysis) is aimed at determining a structure in a data set by optimizing a given partition criterion. In this sense, a structure emerges (becomes formed) without a direct intervention of the user. While the underlying concept looks appealing, there are numerous sources of domain knowledge that could be effectively incorporated into clustering mechanisms and subsequently help navigate throughout large data spaces. In unsupervised learning, this unified treatment of data and domain knowledge leads to the general concept of what could be coined as knowledge-based clustering. In this study, we discuss the underlying principles of this paradigm and present its various methodological and algorithmic facets. In particular, we elaborate on the main issues of incorporating domain knowledge into the clustering environment such as (a) partial labelling, (b) referential labelling (including proximity and entropy constraints), (c) usage of conditional (navigational) variables, (d) exploitation of external structure. Presented are also concepts of stepwise clustering in which the structure of data is revealed via a series of refinements of existing domain granular information.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.