Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  parametric uncertainty
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, we investigate the global uniform practical exponential stability for a class of uncertain Takagi-Sugeno fuzzy systems. The uncertainties are supposed uniformly to be bounded by some known integrable functions to obtain an exponential convergence toward a neighborhood of the origin. Therefore, we use common quadratic Lyapunov function (CQLF) and parallel distributed compensation (PDC) controller techniques to show the global uniform practical exponential stability of the closed-loop system. Numeric simulations are given to validate the proposed approach.
EN
This article presents a control algorithm for nonholonomic mobile manipulators with a simple, geometric holonomic constraint imposed on the robot’s arm. A mathematical model in generalized, auxiliary and linearized coordinates is presented, as well as the constrained dynamics of the robotic system. A position-force control law is proposed, both for the fully known robot’s model, as well as for the model with parametric uncertainty in the dynamics. Theoretical considerations are supported by the results of computer simulations.
3
Content available remote On parametric Hurwitz stability margin of real polynomials
EN
The paper deals with the problem of determining Hurwitz stability of a ball of polynomials defined by a weighted lp norm in the coefficient space where p is an arbitrary positive integer including infinity. The solution of the case when the weights are supposed to be the same for coefficient being above and below its nominal value corresponding to symmetric ball has been given by Tsypkin and Polyak. However, sometimes it seems to be useful to have a possibility to consider these weights as different, resulting in the asymmetric ball. This is, for example, the situation where the weights express our level of confidence that the real value of a coefficient lies in some interval. Such approach is used if the value of a coefficient is estimated by an expert. Solution of the problem is based on frequency domain plot in the complex plane and on applying the Zero Exclusion Theorem. The main idea consists in separation of the original problem into four subproblems and using an appropriate coordinate transformation which makes the value set independent of frequency. This transformation makes it possible to move the relative value set into the origin of the complex plane and to easily formulate the necessary and sufficient condition of Hurwitz stability of asymmetric ball of polynomials with prescribed radius or determine the maximum radius preserving stability. The whole graphical procedure consists of four plots instead of one, needed in the symmetric case.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.