Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pantoprazole
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study describes the development and validation of a simple, specific, accurate, and precise method for quantitative determination of Esomeprazole in human serum using Pantoprazole as internal standard (IS). After the addition of internal standard, Esomeprazole from serum samples was extracted simply by protein precipitation method followed by centrifugation and the supernatants were directly injected into the high performance liquid chromatography (HPLC). The chromatographic separation of the compounds was obtained on Hitachi Lachrom C8 column (5 µm, 250 × 4.6 mm) with a mobile phase consisting of 5 mM potassium dihydrogen phosphate pH 7.4 and acetonitrile in a ratio of 70:30 with UV detection at 302 nm with a flow rate of 1 mL/min. The method was sensitive and specific, and validated over a concentration range of 0.06–6.0 µg/mL. The limit of detection (LOD) and lower limit of quantification (LOQ) was 0.03 µg/mL and 0.06 µg/mL, respectively. The precision and accuracy expressed as relative standard deviation were less than 15%. The average recovery of Esomeprazole from serum was 97.08%.
EN
A reversed-phased high-performance liquid chromatography–diode-array detection (HPLC–DAD) method has been developed for investigating the stress-dependent degradation of pantoprazole (PTZ) by a photolytic and oxidative mechanism. The developed method separated PTZ from its degradation products on a C18 column with a mobile phase consisted of methanol and water (60:40, v/v; pH 3.0) at a flow rate of 1 mL/min. The linear regression coefficient of 0.9995 was obtained for a concentration range from 5 to 25 μg/mL. The % relative standard deviation for repeatability and intermediate precision were below 0.5% and 1.5%, respectively, while the sensitivity of the method was demonstrated by a limit of detection value of 0.25 μg/mL. The stress sample analyses for PTZ results revealed the formation of a total of 18 degradation products, and out of them, 9 degradation products were common for both photolytic and oxidative degradations. Further, the oxidation by azobisisobutyronitrile produced the highest number of degradation products (11 impurities), 3 of which are more hydrophobic than PTZ. In photolytic degradation, 8 and 7 degradation products were observed with UV radiation and sunlight exposure, respectively. Furthermore, the degradation of pantoprazole sodium injection formulation was carried out under the same stress conditions, and it revealed the formation of 3 common impurities under both stress conditions, but other impurities were not detected in the formulations. Finally, 3 common impurities formed in formulations of PTZ injections, viz., sulfone, N-oxide, and N-oxide sulfone impurities, were identified by spike analyses.
EN
A sensitive, inexpensive high-performance liquid chromatography–ultraviolet detection (HPLC–UV) method has been developed and validated for the simultaneous monitoring of pantoprazole sodium sesquihydrate (PSS) and domperidone maleate (DM) in rabbit plasma on a C18 column with UV detection at 285 nm. Box–Behnken design was used with 3 independent variables, namely, flow rate (X1), mobile phase composition (X2), and phosphate buffer pH (X3), which were used to design mathematical models. Response surface design was applied to optimize the dependent variables, i.e., retention time (Y1 and Y2) and percentage recoveries (Y3 and Y4) of PSS and DM. The method was sensitive and reproducible over 1.562 to 25 μg/mL. The effect of the quadratic outcome of flow rate, mobile phase composition, and buffer pH on retention time (p ˂ 0.001) and percentage recoveries of PSS and DM (p = 0.0016) were significant. The regression values obtained from analytical curve of PSS and DM were 0.999 and 0.9994, respectively. The percentage recoveries of PSS and DM were ranged from 94.5 to 100.41% and 94.77 to 100.31%, respectively. The developed method was applied for studying the pharmacokinetics of PSS and DM. The Cmax of test and reference formulations were 48.06 ± 0.347 μg/mL and 46.31 ± 0.398 μg/mL for PSS, and 15.11 ± 1.608 μg/mL and 12.06 ± 1.234 μg/mL for DM, respectively.
EN
This paper deals with optimization of a liquid-liquid extraction procedure for simultaneous HPLC analysis of domperidone and pantoprazole in human plasma. Central composite design and Derringer’s desirability function were used to optimize the concentration of KOH and the volume of ethyl acetate as the main factors affecting the liquid-liquid extraction procedure. After extraction, the analytes were separated quantitatively on a C 18 column with 10 mM pH 7.0 phosphate buffer-methanol-acetonitrile 48.46:20:31.54 ( υ / υ ) as mobile phase at a flow rate of 1.20 mL min -1 and with UV detection at 285 nm. It was concluded that extraction recovery of both the analytes was affected by KOH concentration and that recovery of pantoprazole was affected by ethyl acetate (extraction solvent) volume. Extraction recovery under optimum extraction conditions was 93.52% for domperidone and 92.72% for pantoprazole. The optimized extraction method was validated. Linearity was established for six levels in the ranges 10–1000 ng mL -1 for pantoprazole and 15–1000 ng mL -1 for domperidone. The lower limit of quantitation (LLOQ) and detection (LOD) were estimated as 9.84 and 5.91 ng mL -1 , respectively, for pantoprazole and 14.56 and 8.79 ng mL -1 for domperidone. The optimized method was linear, specific, accurate, and precise; the high recovery (>92%) and low relative standard deviation (<2.5%) enable reliable quantification of these analytes in spiked human plasma.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.