Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  palynomorphs
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Early Jurassic succession of the Holy Cross Mountains region in Poland offers a rare opportunity to study ecosystem complexity during the evolution and diversification of early dinosaurs, especially herbivorous ones. The section consists of continental and coastal deposits containing fossil assemblages spanning nearly 25 My of changes in terrestrial plants and some groups of invertebrates and tetrapods. Based on macrofossils and pollen and spores, the broader characteristics of the flora in this succession are presented. The floral assemblages show typical Early Jurassic characteristics and contain lycopsids, sphenopsids, ferns, cycadaleans, bennettitaleans, gnetaleans and ginkgoaleans, as well as conifers, and are similar to other Hettangian–Toarcian floral successions in Europe, showing the presence of a vast coniferous forest dominated by Hirmeriella in the early Hettangian, replaced by ginkgophyte-dominated floras in younger stages and araucarian conifer-dominated forests in the late Pliensbachian. Dinosaurs are documented mainly from their trace fossils (tracks and coprolites). Six distinct track assemblages (stratigraphically separated ichnoassemblages) of different ages can be identified. Current evidence indicates that while Anomoepus tracks are abundant throughout the long Hettangian–late Pliensbachian interval, medium-sized to large ornithischian tracks do not occur below the lower–middle Hettangian transition zone, associated with the first major marine transgression in the region. Hettangian strata with different theropod tracks (Grallator, Anchisauripus, Eubrontes, Kayentapus, cf. Megalosauripus), small Anomoepus tracks, numerous medium-sized Anomoepus-like tracks, Moyenisauropus tracks, tetradactyl tracks of sauropodomorphs (cf. Pseudotetrasauropus) and oval-shaped tracks of sauropods (Parabrontopodus) significantly contrast with the higher part of the Lower Jurassic succession (upper Pliensbachian Drzewica Formation and middle–upper Toarcian Borucice Formation) containing new types of medium-sized to large theropod tracks (Therangospodus), small and medium-sized bird-like tridactyl tracks (cf. Trisauropodiscus, cf. Anomoepus), exceptionally large, oval-shaped sauropod tracks (Sauropoda indet.), and new types of medium-sized and large ornithischian tracks (cf. Deltapodus, cf. Anomoepus). This points to a noticeable difference between the Hettangian and late Pliensbachian–Toarcian dinosaur ichnofaunas and may facilitate the study of regional and global changes and correlations. Both the palaeofloras and dinosaur trace fossils document ecosystem diversity and ecosystem changes, presented here in review form. The nature of these changes requires more detailed study, but preliminary results suggest the occurrence of rather complex and pronounced transformations in the dinosaur communities of the Holy Cross Mountains region. Based on our observations, the most significant event in Early Jurassic ecosystems took place within the Hettangian (change in floristic composition, the emergence of new groups of dinosaurs), but we also found what we believe to be a record of a major faunal turnover across the late Pliensbachian–middle–late Toarcian interval.
PL
Na podstawie badań litologicznych, profilowań sedymentologicznych oraz analiz palinologicznych rozpoznano środowiska sedymentacji i palinofacje kredy dolnej w otworach wiertniczych Ciechocinek IG 3, Mszczonów IG 1 i Korabiewice PIG 1. Wykonano dokładną analizę spektrum palinologicznego – stosunku zawartości planktonu do całości palinomorf, ilości fitoklastów w całkowitym kerogenie oraz zawartości materii organicznej. W celu scharakteryzowania palinofacji w analizowanych otworach przeprowadzono korelacje danych palinologicznych z wynikami profilowań sedymentologicznych oraz z obserwacjami litofacjalnymi i paleogeograficznymi. Wyniki badań pozwoliły na ogólne rozpoznanie środowisk sedymentacji i palinofacji w strefie depozycji węglanowo-silikoklastycznej oraz w strefie aktywnej poduszki solnej. Na podstawie zebranego materiału, w nawiązaniu do określonego w badaniach palinofacjalnych spektrum palinologicznego, w profilu kredy dolnej wydzielono następujące środowiska morskie: odbrzeża, przybrzeża dolnego–środkowego, płytkiej zatoki morskiej, laguny i płytkiego szelfu węglanowo-silikoklastycznego. W przypadku braku jednoznacznych cech diagnostycznych środowisko sedymentacji określono jako ogólnie morskie.
EN
Based on lithological and sedimentological logging and palynological analysis, sedimentary environments and palynofacies were identified in the Lower Cretaceous of the Ciechocinek IG 3, Mszczonów IG 1 and Korabiewice PIG 1 boreholes. A thorough analysis of the palynological spectrum was performed, determining the ratio between the amount of palynomorphs and the total of plankton, the amount of phytoclasts in the total kerogen, and the content of organic matter. Palynological data were correlated with sedimentological, lithofacies and paleogeographical data. The research resulted in a general recognition of sedimentary environments and palynofacies in the carbonate-clastic deposition zone and in a zone of an active salt pillow. The following sedimentary environments were identified in the Lower Cretaceous sediments, based on the analysed material and with regard to the palynological spectrum: offshore, lower–middle shoreface, embayment, lagoon and shallow carbonate-siliciclastic shelf. In case of the absence of diagnostic features for exact determination of sedimentary environments, the environments were defined as generally marine.
EN
The palynological analysis of the Middle Jurassic deposits has been carried out for the borehole No. 16 and No. 5 located in Elektrougli west of Moscow region (Russia). Twenty samples have been macerated from clays of these two boreholes. Only one of them contained palynomorphs (spores and pollen) in sufficient amount. As a result the single palynological assemblage was established. Pollen grains are abundant (over 55% of the total of the assemblage). The grains of Alisporites similis (Balme) Dettmann, and A lowoodensis de Jersey dominates among the pollen reaching to 22% of the assemblage. It should be noted that a lot of different coniferous pollen grains from ancient deposits were found here, as such as: A. parvus de Jersey, A. robustus Nilsson and Pseudopinus textilis Bolchovitina. There were also the pollen grains of Cycadopites sp. (6%), and Sciadopityspollenites mesozoicus Couper (4%). A few pollen of Vitreisporites pallidus (Reissinger) Nilsson with affinity to Caytoniales, Perinopollenites elatoides Couper and Ephedripites sp. were rarely discovered. There are a lot of spores (45%) in the studied palynoassemblage. Spores of Filicopsida (12%) are represented by Dictyophyllidites harrisii Couper, Leiotriletes magna (de Jersey) Norris, Deltoidospora juncta (Kara-Murza) Singh with affinity to the genera Dicksonia, and Matoniasporites related to Matoniaceae. There are a few spores (10%) of Cyatheaceae (Cyathidites minor Couper). The spores of hydrophilic ferns are represented by Osmundacidites jurassicus Couper, Baculatisporites comaumensis (Cookson) Potonie, and Todisporites minor Couper. There are various lycopods (5%): Uvaesporites verrucosus (de Jersey) Helby in de Jersey, Densoisporites velatus Weyland & Krieger, Lycopodiumsporites clavatoides Couper; Lycopodiumsporites subrotundum (Kara-Murza) Pocock and moss spores of Polycingulatisporites crenulatus Playford & Dettmann (2%) which are typical for the Bajocian deposits. There are very common the tuberculous forms such as Leptolepidites sp. and Camptotriletes cerebramiformis Maljavkina. The acritarchs are represented by Leiosphaeridia sp. This assemblage can be compare with palynological assemblage of the Bajocian age from Denmark (Nielsen et al. 2010) by comparable quantity of Cyatheaceae and presence of Caytoniales pollen. Thus studied palynological assemblage has the Bajocian age documented by presence of Polycingulatisporites crenulatus, Alisporites similis, A. lowoodensis and also ancient forms of A. parvus, A. robustus, Uvaesporites verrucosus, Baculatisporites comaumensis which are typical for the Aalenian Age. The quantity of lycopods, moss and ferns of Osmundaceae indicates the lake-mire continental conditions of the studied region.
EN
The paper give a biostratigraphic interpretation of the Emsian to Eifelian in the Łysogóry and Kielce regions of the Holy Cross Mountains, based on the different groups of microfossils: miospores, conodonts, ostracods and foraminifers. Four miospore zones were identified in the uppermost Pragian, Emsian and lowermost Eifelian: Verrucosisporites polygonalis-Dibolisporites wetteldorfensis (PW), Emphanisporites annulatus-Brochotriletes bellatulus (AB), Emphanisporites foveolatus-Verruciretusispora dubia (FD) and Acinosporites apiculatus-Grandispora protea (AP). In the Łysogóry region, the Emsian and lowermost Eifelian comprises four cono-dont zones: serotinus,patulus,partitus and costatus, three ostracod assemblages and several foraminifer assemblages. In the Kielce region, deposits from the Emsian/Eifelian boundary interval yield conodonts from the patulus and partitus zones, two ostracod assemblages and assemblages of agglutinated foraminifers. The joint biostratigraphic analysis allows a tentative correlation of the lithostratigraphic units from both areas. It also provides independent control/calibration on the different biostratigraphical systems. The Pragian/Emsian boundary is located in the lower part of the Barcza Formation and in the lower part of the Haliszka Formation, whereas the Emsian/Eifelian boundary lies in the upper part of the Grzegorzowice Formation and in the upper part of the Winna Formation.
EN
The dispersed miospore assemblage of the Retispora lepidophyta-Verrucosisporites nitidus (LN) Zone from the Holy Cross Mountains(Poland) is marked by enrichment (above 4%) in abnormal spore morphotypes during a terrestrial flora turnover close to the Devonian-Carboniferous boundary, recorded just above the Hangenberg Black Shale level. Incomplete and complete tetrads represent mostly Vallatisporites spp., supplemented by Grandispora, Retusotriletes and Apiculiretusispora. Additional peculiar morphotypes, marked byanomalous overall shape and ornamentation, are interpreted as mutated varieties of Vallatisporites based on intermediate morphologicalstages, connecting them with this well known genus. This relatively high aberrant palynomorph frequency is accompanied by volcanicash intercalations, as well as by charcoal debris and polycyclic aromatic biomarkers indicative of forest wildfire. Thus, the anomalousspore morphology could reflect the mutagenic effect of regional acidification due to explosive volcanism. However, palynological literature data from NW France and Canada highlight the possibility of a supra-regional mutated miospore signal near the Devonian-Carboniferous boundary, and there is need for high-resolution studies of the LN Zone to examine this. The end-Permian scenario of abnormalfloral growth in immensely stressed habitats may therefore apply to other potentially volcanically-induced biotic turnovers.
EN
Two main thrust slices in the Camdag area (NW Anatolia), were informally named the Southern and Northern Camdag units. New micropaleontological and palynological data about the Ordovician, Silurian and Devonian in the Northern Camdag have allowed a better understanding of the Early Palaeozoic evolution of this critical area between the Istanbul Terrane in the west and the Zonguldak Terrane in the east. The Middle Ordovician age obtained from the conodont-bearing limestone band within the Aydos Formation in this study is in agreement with the data from the Zonguldag Terrane. Acritarch evidence suggests a Late Ordovician age of the upper part of Aydos Formation. This paper concerns the Northern unit. Three members are distinguished in the Findikli Formation and dated biostratigraphically. The lower member (Black Shale Member) of the Findikli Formation is absent from the Kabalak Dere section, but was assigned elsewhere to the Llandovery on the basis of graptolites. The middle member (Shale-Siltstone Member) is dated as Wenlock and Ludlow on the basis of acritarchs. The upper member (Shale-Limestones Member) spans a continuous upper Silurian - Lower Devonian succession. The overlaying Ferizli Formation is assigned to the Middle Devonian on the basis of conodonts. The new stratigraphic data indicate that the Southern Camdag unit corresponds to the Istanbul Terrane and the Northern Camdag unit to the Zonguldak Terrane. The tectonic contact between the Northern and the Southern units is a steep south-verging thrust-fault.
7
Content available remote Towards the definition of the Triassic/Jurassic systems boundary
EN
This contribution summarizes the main stratigraphic results of the T/J Boundary WG since its establishment in 1988 and of the IGCP Project 458 (2001-2005); state at end of March 2006. The T/J transition in general. It begins with the main end-Triassic extinction event which is related to the negative carbon isotope excursion 13Corg. Above follows a range of strongly impoverished Triassic survivors whose duration is different in different fossil groups. Above begins the succession of Jurassic forms, sometimes at first together with last Triassic forms. Up to now (March 2006) four candidate GSSPs have been proposed: St. Audrie's Bay (Somerset, UK), Muller Canyon (Nevada, USA), Chilingote (Utcubamba Valley, Peru), and Kunga Island (British Columbia, Canada). Further important sections are known; one, situated in the Alps, will be proposed as a fifth candidate. Three possibilities to define the T/J boundary are proposed: 1. within the succession of early psiloceratids (England, Nevada); 2. at the base of the psiloceratid succession (England, Nevada, Peru); 3. at the radiolarian turnover in the T/J transitional interval (Canada). Proposal 1. It is essentially the traditional boundary since the 19 th century, indicated by the first wide-spread occurrence of psiloceratids. Since no psiloceratid species is cosmopolitan, global correlation is possible only by regional species and thus essentially tentative. The proposed correlation Psiloceras planorbis - Ps. calliphyllum - Ps. pacificum is supported by the partly proved, partly probable occurrence of the genus Neophyllites below. Since there is no difference in the associated fossil content below and above the boundary, no proxies are known which could indicate the position of the boundary where ammonites are lacking. In this case only earlier levels are available. Proposal 2. With this proposal all psiloceratids would become Jurassic. The difficulty to distinguish between Triassic and Jurassic psiloceratids would be avoided. A global correlation by ammonites would be more difficult than in "proposal 1" because such early forms are extremely rare, belong to regionally restricted species and are not proved to be coeval. First appearances of Jurassic forms in other fossil groups, particularly in palynomorphs, could be regional proxies for correlations, also with sections where ammonites are lacking. Proposal 3. New investigations suggest that the radiolarian turnover could be a global event and potentially a suitable system boundary. However, successions of sufficiently preserved radiolarians are extremely rare and they are, moreover, poor in other fossils.Therefore, the correlation with other fossil groups is diffcult and, consequently, the exact stratigraphic position of the turnover is not yet known. No proxies of other fossil groups are known to recognize the turnover in sections without radiolarians. The strong impact on the evolution of radiolarians suggests that the radiolarian turnover is close to the main end-Triassic extinction event. In this case the turnover could be situated still in latest Triassic as defined e.g. by surviving Misikella posthernsteini in Britain.
EN
A study of the Triassic/Jurassic transition in Asturias (northern Spain) was performed studying 5 surface sections and 2 boreholes (Fig. 1). Four lithological units were differentiated and correlated. The lower unit is composed of lutites and evaporites (equivalent to the Upper Triassic Keuper facies). The middle unit, which contains the Triassic/Jurassic boundary, corresponds to the well-bedded carbonates of the Solis Member of the Gijon Formation (Fig. 2). The upper unit (Barzana Member) is composed of lutites, evaporites and carbonates. The Fabares Member, overlying or representing a time equivalent of the Barzana Member is composed of a carbonate breccia with a lutitic matrix, formed by the dissolution and the collapse of the Barzana Member. The finding of ammonoids and bivalves in the Solis Member allowed refinement of the biostratigraphy and chronostratigraphy of the Rhaetian and the Hettangian. Among the ammonoids, the record of an (?)Arcestidae (Rhaetian) and several Psiloceras (such as Caloceras pirondii (Reyn?s) of the Hettangian, Planorbis Zone, in the upper part of the Solís Member can be stand out. The dominant Rhaetian bivalves are Isocyprina concentrica and Bakevellia praecursor, which together with Isocyprina ewaldi, "Pteromorphus" elongatus, Pteromya longportensis, "Placunopsis" cf. alpina, Modiolus minimus and Paleocardita cf. austriaca, represent a similar assemblage to that found in the Westbury and Lilstok formations of the Late Rhaetian age of the UK. The Hettangian bivalves are represented by the widely distributed species Pteromya tatei, associated with Cuneigervillia rhombica, Parallelodon hettangiensis and Eomiodos menkei. This assemblage is known in the Hettangian Planorbis Zone of France and Germany. The palynological study allowed identification of 20 spores taxa, 24 pollen taxa, 1 acritarch, 2 prasinophytes and 2 dinoflagellate cyst. Three palynological assemblages (PA) have been distinguished. PA1 is typically Rhaetian and corresponds to the Rhaetipollis germanicus Zone. It is characterized by the presence of Corollina meyeriana, Rhaetipollis germanicus, Ovalipollis pseudoalatus and Tsugaepollenites pseudomassulae. PA2, identified in the Solis Member, is dominated by Corollina pollen grains together with a few spores taxa, acritachs and prasinophytes and can be Rhaetian and/or Hettangian in age. PA3 represented in the upper part of Solis Member and in the Barzana Member contains Hettangian pollen assemblages characterized by Corollina meyeriana, C. torosa, Kraeuselisporites reissingeri, Ischyosporites variegatus and Cerebropollenites thiergartii. Both PA2 and PA3 can be related to the Kraeuselisporites reissingeri Zone. The palynology of the Asturian sections can reasonably be correlated with that of St. Audrie's Bay (UK).
9
Content available remote Rhaetian/Hettangian boundary in Pomerania, Poland
EN
Two boreholes from Pomerania, Western Poland (Kamień Pomorski IG-1 and Mechowo IG-1) yielded core material from the Triassic/Jurassic transition in continental deposits. In Mechowo IG-1 the Rhaetian/Hettangian boundary occurs within thick sandstone succession of fluvial origin and this boundary is determined based on occurrence of megaspores (Trileites pinguis and Nathorstisporites hopliticus assemblages - Marcinkiewicz 1971). In Kamień Pomorski (25 km to NW, depth 665.5-678.2 m), the grain size of sediments is significantly finer. Also, a minor marine ingression with dinoflagellate cysts can be noted (this ingression can be tentatively correlated with the "Contorta beds", known from Germany and Scandinavia). Uppermost Rhaetian deposits represent alluvial overbank subsystems, floodplain, lacustrine and crevasse splay facies dominate. This indicates a substantial limitation of depositional energy of the alluvial palaeoenvironment, which reflects both palaeoslope (Mechowo was closer to the sedimentary source area situated to the East) and probably local tectonic factor. Consequently, erosion at the Rhaetian/Hettangian boundary (sequence boundary) is inconspicuous if any, which is an exceptional case in the Early Jurassic Polish Basin, where usually Rhaetian deposits are missing or reduced from the top by erosion. Material from Kamień Pomorski IG-1 borehole gives much more abundant palynological data. In the uppermost Rhaetian, the following miospores are most characteristic: spores Semiretisporites gothae (restricted only to the Late Triassic), accompanied by Limbosporites lundblandi Nilsson, Baculatisporites wellmanii (Couper) Krutzsch, Cingulizonathes rhaeticus (Reinhardt) Schulz, Conbaculatisporites mesozoicus Klaus, Deltoidospora toralis (Leschik) Lund, Densosporites fissus (Reinhardt) Schulz, Lycopodiacidites rugulatus (Couper) Schulz, pollens Alisporites radialis (Leschik) Lund, Cuneatisporites cf. radialis Pautsch, Ovalipolis ovalis Krutzsch. This is a typical Rhaetian miospore assemblage. Interestingly, the uppermost Rhaetian deposits show a characteristic palynofacies turnover with a conspicuous "fern peak" (huge number and domination of fern-derived spores). This may point to the environmental/climatic change at the Rhaetian/Hettangian boundary and concomitant biotic crisis. The lowermost Hettangian assemblage comprises (among others): spores Contignisporites problematicus (Couper) Playford & Dettmann, Conbaculatisporites mesozoicus (Madler) Lund, Concavisporites toralis (Leschik) Nilsson, Cosmosporites elegans Nilsson, Zebrasporites interscriptus (Thiergart) Klaus, Lycopodiumsporites semimuris Danze-Corsin & Laveine and pollens Pinuspollenites minimus (Couper) Kemp. These preliminary studies are encouraging and the Kamień Pomorski profile can add to the European record of continental Rhaetian/Hettangian boundary. Furter palynological and isotope studies are planned in this section.
10
Content available remote Stratygrafia dewońsko-karbońskiej serii węglanowej w rejonie Rajbrotu i Tarnawy
PL
Zintegrowane badania biostratygraficzne, polegające na równoczesnym badaniu tych samych profilów przy pomocy konodontów, otwornic i palinomorf, aczkolwiek nie dały w pełni satysfakcjonujących wyników, pozwoliły na datowanie granic jednostek litostratygraficznych wyróżnionych przez Narkiewicza (2001), na dość wiarygodną wzajemną korelację profilów, przynajmniej na poziomie chronostratygraficznym, na oszacowanie rozmiaru lokalnych luk erozyjnych, a w przyszłości stać się mogą podstawą do szerszych korelacji na skalę regionalną. Początek sedymentacji węglanowych osadów dewońskich przypada w analizowanym obszarze na przełom wczesnego i środkowego dewonu, na pogranicze emsu i eiflu. W obrębie serii węglanowej stwierdzono obecność niewielkiej miąższości osadów środkowego dewonu, prawdopodobnie franu (jego obecności można się jedynie domyślać na podstawie położenia w profilach, brak jest natomiast, jak na razie, datowań biostratygraficznych), relatywnie dużej miąższości datowanych osadów famenu oraz turneju i wizenu: hastaru i iworu, prawdopodobnie również czadu i arundu, a także dobrze datowanego holkeru. Granica między dewonem a karbonem przebiega w obrębie jednej jednostki litostratygraficznej, kompleksu wapieni gruzłowych i ziarnistych, ale jej natura — ciągłość sedymentacji między dewonem a karbonem z objawami spłycenia, jak to ma miejsce w części profilów na świecie, czy też luka erozyjna — pozostaje nadal nieznana. Sedymentacja osadów węglanowych karbonu trwała w badanym obszarze od końca emsu lub początku eiflu aż do wizenu, co najmniej po holker, natomiast sedymentacja osadów klastycznych rozpoczęła się być może już w asbie, a na pewno w namurze, prawdopodobnie w arnsbergu—w dobie triangulus-knoxi (TK), jak wynika z badań Trzepierczyńskiej (2001). Obserwowana luka o tektoniczno-erozyjnym charakterze obejmuje więc późny wizen, asb i brigant. W żadnym z badanych trzech profilów nie znaleziono osadów tego wieku, natomiast w najwyższych partiach serii węglanowej w profilu Tarnawa 1, wydatowanych na podstawie otwornic jako wyższy turnej — iwor, zona Tournayella (Cf2), znalezione zostały w odwróconym porządku stratygraficznym, w niewielkim stopniu wymieszane, zespoły miospor identyfikujące wspomniane brakujące piętra najwyższej części wizenu, niżej miospory dolnej części brigantu (zona VF), wyżej asbu (zony TC i NM). W dolnych partiach osadów klastycznych w profilu Tarnawa 1, datowanych jako namur (prawdopodobnie arnsberg), notowane są również liczne i zróżnicowane taksonomicznie miospory, reprezentujące poziomy TC i NM asbu oraz poziom VF brigantu. Taki zapis stratygraficzny na pograniczu serii węglanowej i klastycznej w profilu Tarnawa 1 sugeruje dość skomplikowany scenariusz procesów i zdarzeń geologicznych, jakie mogły mieć miejsce w tym niewielkim obszarze pod koniec wizenu i na początku namuru: (1) depozycję osadów węglanowych prawdopodobnie aż po holker; (2) śródwizeński epizod tektoniczno-erozyjny, w wyniku którego usuwane mogły być węglanowe osady holkeru, arundu, czadu i części iworu; (3) prawdopodobnie depozycję niewielkiej miąższości klastycznych osadów asbu, brigantu i pendleju; (4) późnowizeński epizod tektoniczno-erozyjny, w wyniku którego usuwane być mogły sukcesywnie klastyczne osady pendleju, brigantu i asbu i (5)uruchomienie sedymentacji w namurze - prawdopodobnie w Arnsbergu.
EN
The subdivision in lithostratigraphical units presently used (Narkiewicz 2001) is schematically shown on Figure 4. Biostratigraphy of the Devonian and Carboniferous in the Tarnawa-Rajbrot area has been established using conodonts and foraminifers and palynomorphs. The three microfossil groups used in conjunction can facilitate better precision in dating and correlating of sequences. Unfortunately, for most of the Devonian and Lower Carboniferous limestone succession, the miospores recovered tend to be too much oxidized and poorly preserved to be useful. They are routinely used in the siliciclastic part of the sequence. Unfortunately, the biostratigraphic evidence is too much incomplete to firmly establish the boundary between the lithostratigraphic units as well as between the Devonian and Carboniferous successions (see Figure 4). Marly dolostones and limestones with bioturbations (DWMB) spans the Middle Devonian, limestones, dolomicrites and dolosparites (WDD) include part of the Middle Devonian, probably Frasnian and part of the Famennian. Nodular and grained limestones unit (WGZ) include the uppermost part of Famennian and part of the Tournaisian (up to the isosticha-Upper crenulata conodont Zone). The Devonian-Carboniferous boundary runs within this lithostratigraphic units but its nature remains unknown. Marly horizon (PM) spans the uppermost isosticha-Upper crenulata-Lower typicus conodont zones (Tournaisian - Ivorian), grained limestones (WZ) include upper part of the Tournaisian (Ivorian to Arundian), and upper limestones and marls unit (WGM) belong to the Viséan (Holkerian, Cf5 foraminifer Zone). Using the integrated results of conodont, foraminifer and palinomorph studies it is possible to conclude that the limestone succession spans the Middle and Upper Devonian, Tournaisian and much of the Viséan, up to the Holkerian. The siliciclastic sedimentation starts certainly at the begining of the Namurian (see Trzepierczyńska, 2001), maybe earlier (during the ?Asbian). There is a significant hiatus at the erosional boundary between the carbonate and clastic sequences which may span the late Asbian and Brigantian. Deposits of this age have been found in none of the three borehole sections. The uppermost t parts of the carbonate series of the Tarnawa 1 borehole, dated by foraminifers as the Upper Tournaisian Ivorian, Tournayella Zone, yielded miospore assemblages, which point to the above-mentioned missing stages of the uppermost Viséan, but occurring in a reverse stratigraphic order (lower in the sections younger miospores of the Brigantian VF zone, above in the section older miospores of the Asbian TC and NM zones). In the lower parts of the clastic sequence of the Tarnawa 1 borehole, dated as the Namurian (probably Arnsbergian), abundant and taxonomically diverse miospores representing the Asbian TC and NM, as well as Brigantian VF Zone, were also found. Such a stratigraphic record of the carbonate/clastic transition zone from the Tarnawa 1 borehole section suggests a fairly complicated succession of events, that may have taken place over this small area at the end of Viséan and beginning of the Namurian: (1) carbonate sedimentation, probably until the Holkerian (by analogy to the Rajbrot 2 borehole section); (2) Mid-Viséantectonic-erosional event that may have caused the removal of the Holkerian, Arundian, Chadian and a part of Ivorian deposits; (3) probable deposition of small thickness Asbian, Brigantian and Pendleian clastics; (4) Late-Viséan tectonic-erosional event which might have resulted in the removal of Pendleian, Brigantian and Asbian clastics; (5) renewal of deposition in the Namurian, probably Arnsbergian. Ivorian to Arundian), and upper limestones and marls unit (WGM) belong to the Viséan (Holkerian, Cf5 foraminifer Zone). Using the integrated results of conodont, foraminifer and palinomorph studies it is possible to conclude that the limestone succession spans the Middle and Upper Devonian, Tournaisian and much of the Viséan, up to the Holkerian. The siliciclastic sedimentation starts certainly at the begining of the Namurian (see Trzepierczyńska, 2001), maybe earlier (during the ?Asbian). There is a significant hiatus at the erosional boundary between the carbonate and clastic sequences which may span the late Asbian and Brigantian. Deposits of this age have been found in none of the three borehole sections. The uppermost tparts of the carbonate series of theTarnawa 1 borehole, dated by foraminifers as the Upper Tournaisian Ivorian, Tournayella Zone, yielded miospore assemblages, which point to the above-mentioned missing stages of the uppermost Viséan, but occurring in a reverse stratigraphic order (lower in the sections younger miospores of the Brigantian VF zone, above in the section older miospores of the Asbian TC and NM zones). In the lower parts of the clastic sequence of the Tarnawa 1 borehole, dated as the Namurian (probably Arnsbergian), abundant and taxonomically diverse miospores representing the Asbian TC and NM, as well as Brigantian VF Zone, were also found. Such a stratigraphic record of the carbonate/clastic transition zone from the Tarnawa 1 borehole section suggests a fairly complicated succession of events, that may have taken place over this small area at the end of Viséan and beginning of the Namurian: (1) carbonate sedimentation, probably until the Holkerian (by analogy to the Rajbrot 2 borehole section); (2) Mid-Viséantectonic-erosional event that may have caused the removal of the Holkerian, Arundian, Chadian and a part of Ivorian deposits; (3) probable deposition of small thickness Asbian, Brigantian and Pendleian clastics; (4) Late-Viséan tectonic-erosional event which might have resulted in the removal of Pendleian, Brigantian and Asbian clastics; (5) renewal of deposition in the Namurian, probably Arnsbergian.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.