The corrosion of steel reinforcement by chloride is commonly recognized as a key factor that contributes to the degradation of durability in reinforced concreae structures. Using supplementary cementitious materials, such as industrial and agricultural waste materials, usually enhances the impermeability of the concrete and its corrosion resistance, acid resistance, and sulfate resistance. This study’s primary purpose is to examine the effects of replacing ordinary Portland cement (OPC) with ultrafine palm oil fuel ash (U-POFA) on the corrosion resistant performance of high-strength green concrete (HSGC). There were four HSGC mixes tested; the first mix contained 100% OPC, while the other mixes replaced OPC mass with 20%, 40%, and 60% of U-POFA. The performance of all HSGC mixes containing U-POFA on workability, compressive strength, porosity, water absorption, impressed voltage test, and mass loss was investigated at 7, 28, 60, and 90 days. Adding U-POFA to mixes enhances their workability, compressive strength (CS), water absorption, and porosity in comparison with mixes that contain 100% OPC. The findings clearly portrayed that the utilization of U-POFA as a partial alternative for OPC significantly enhances the corrosion-resistant performance of the HSGC. In general, it is strongly advised that a high proportion of U-POFA be incorporated, totaling 60% of the OPC content. This recommendation is the result of its significance as an environmentally friendly and cost-effective green pozzolanic material. Hence, it could contribute to the superior durability performance of concrete structures, particularly in aggressive environmental exposures.
This paper discussed the treatment of Malaysian petroleum sludge by incorporating palm oil fuel ash (POFA) to replace Portland cement and quarry dust (QD) replaces sand in the solidification/stabilization (S/S) method. Preliminary studies, including chemical composition, heavy metal characterization, density test, compressive strength test, and toxicity characteristic leaching procedure (TCLP), were done to evaluate POFA and QD suitability in S/S matrices. The 10% replacement of POFA recorded a considerable density value ranging from 1500 kg/m3 to 1660 kg/m3. As for S/S matrices containing petroleum sludge, the results indicate the possibility to of encapsulating the sludge in the matrices up to 10%. The highest strength of S/S matrices with petroleum is from PS5% samples with 15.61 MPa at 28 days. The toxicity characteristic of heavy metals from the S/S matrices was below the permissible limit set by USEPA. This investigation could be an alternative solution for petroleum sludge, POFA, and QD disposal and has excellent potential for replacing other treatment approaches employed at the advanced treatment stage for petroleum refinery effluents.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.