Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 24

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  paliwo jądrowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
PL
Czy tak naprawdę jesteśmy w stanie podejść do odpadów promieniotwórczych bez obaw? Otóż nie. Dopóki całkowicie nie "oswoimy atomu”, będziemy bać się negatywnych skutków odpadów promieniotwórczych, niezależnie od źródeł ich pochodzenia.
2
Content available Safeguard w małych reaktorach modularnych −SMR
PL
W opracowaniu przedstawiono podstawowe cechy systemu zabezpieczeń w projektowanych Małych Reaktorach Modularnych – SMR. Rozpowszechnienie małych reaktorów jądrowych budzi uzasadnioną obawę przed ewentualnym rozprzestrzenieniem materiałów jądrowych. Międzynarodowa Agencja Energii Atomowej (MAEA) opracowuje zalecenia dotyczące kontroli tych materiałów w nowo powstających małych reaktorach o bardzo różnorodnych konstrukcjach na etapie projektowania.
EN
The paper presents the basic features of the safeguard at the designed Small Modular Reactors – SMR. The spreading of small nuclear reactors gives rise to a well-founded fear of the possible proliferation of nuclear material. The International Atomic Energy Agency (IAEA) is developing recommendations for the control of these materials in newly developed small reactors of a wide variety of designs at the design stage.
PL
Choć w Polsce nie ma elektrowni atomowej, to od ponad 60 lat istnieje miejsce, gdzie w sposób profesjonalny i bezpieczny składowane są odpady promieniotwórcze i paliwo jądrowe. To Krajowe Składowisko Odpadów Promieniotwórczych (KSOP) w Różanie.
PL
Budowa energetyki jądrowej jest bezwzględnie konieczna i to z wielu powodów. (1) Jest przyjazna środowisku, jest bowiem bezemisyjnym źródłem elektryczności. Nie emituje w ogóle pyłów, związków siarki, azotu, dwutlenku węgla. (2) Zapewnia przy tym, co szalenie ważne, stabilne zasilanie odbiorców w energię elektryczną przez cały rok. W energię, bez której współczesna cywilizacja nie może istnieć. Roczny czas wykorzystania mocy elektrowni jądrowych przekracza bowiem 8000 h (należy przypomnieć, że rok liczy 8760 h). (3) Co więcej, paliwa jądrowego: uranu, plutonu i toru wystarczy na wiele setek lat, gdy natomiast zasoby węgla i gazu w coraz szybszym tempie się wyczerpują.
PL
W Rumunii pracuje jedyna na kontynencie europejskim Elektrownia Jądrowa Cernavoda (rum. Centrala Nucleară de la Cernavodă) wykorzystująca kanadyjską technologię reaktorów energetycznych CANDU 6. W reaktorach tego typu paliwem jest niewzbogacony uran, zaś chłodziwem i moderatorem ciężka woda. EJ Cernavoda pokrywa około 20% zapotrzebowania na energię elektryczną w krajowym systemie elektroenergetycznym Rumunii, przyczyniając się do redukcji emisji CO2 o około 10 milionów ton rocznie. Obecnie w elektrowni pracują dwa bloki jądrowe, każdy o mocy elektrycznej 706 MW, uruchomione kolejno w latach 1996 i 2007. Pierwotne plany przewidywały budowę jeszcze trzech kolejnych jednostek, z których w przyszłości ostatecznie powstać mają jeszcze dwie. W artykule opisano historię powstania EJ Cernavoda i jej dotychczasową eksploatację. Obszernie scharakteryzowano kanadyjską technologię reaktorów energetycznych CANDU.
EN
Cernavoda Nuclear Power Plant (Centrala Nucleară de la Cernavodă) in Romania – using the Canadian technology of power reactors CANDU 6 – is the only one of this type working on the European continent. In such reactors the fuel is natural uranium and heavy water works as the coolant and the moderator. NPP Cernavoda covers about 20% of electric energy demand in the Romanian national power system, contributing to the CO2 emission reduction by around 10 million tonnes per year. At present, there are two nuclear units (of 706 MW capacity each) working in the plant, commissioned in the years 1996 and 2007 respectively. It was originally planned to build three more units but finally it was decided to build only two in the future. Presented is the history of how the NPP Cernavoda originated and its up to now conducted operation. Described is extensively the Canadian technology of CANDU power reactors.
PL
Opracowano procedury wydzielania, zatężania i oznaczania wybranych jonów, które mogą być wykorzystywane do oceny procesów fizykochemicznych zachodzących podczas normalnej eksploatacji elektrowni jądrowej. Woda jest niezbędna do prawidłowej pracy elektrowni jądrowej. Może ona być jednak silnie agresywnym medium w kontakcie z materiałami konstrukcyjnymi, co prowadzi m.in. do obniżenia szczelności i wytrzymałości prętów paliwowych i materiałów układu pierwotnego reaktora, a tym samym do powstawania źródeł skażeń. Czystość wody używanej w eksploatacji reaktora jest więc istotnym czynnikiem wpływającym na procesy korozji elementów konstrukcyjnych.
EN
Four H3BO, Li, transition metal ions and anions-containing model solns. were treated either with an anion exchange resin or with a cation-chelating agent and then analyzed by spectroscopic methods for anions and cations present in the pre-treated soln. samples. The procedure based on chelating the cations was more efficient at detn. of transition metal ions.
PL
NCBR założył, że Projekt będzie realizowany w postaci dziesięciu niezależnych zadań badawczych. Trzy z nich koordynował Instytut Chemii i Techniki Jądrowej w Warszawie. Niniejsza publikacja przedstawia zadanie nr 4: Rozwój technik i technologii wspomagających gospodarkę wypalonym paliwem i odpadami promieniotwórczymi. Cele szczegółowe były następujące: − metody wyodrębniania plutonu i długożyciowych aktynowców; − metody skracania okresu rozpadu promieniotwórczego komponentów wypalonego paliwa w reaktorach na neutrony prędkie lub metodami transmutacji; − opracowanie nowych technologii przerobu i postępowania z nisko- i średnioaktywnymi odpadami promieniotwórczymi; − opracowanie nowych technologii zmniejszenia radiotoksyczności odpadów promieniotwórczych, w tym metodami radiochemicznymi; − opracowanie fizyko-chemicznych podstaw technologii kondycjonowania odpadów promieniotwórczych i wypalonego paliwa; − wykorzystywanie wyodrębnionych pierwiastków z wypalonego paliwa do wytwarzania prekursorów paliwa dla reaktorów nowej generacji. Dodatkowym i szczególnie cennym rezultatem prowadzonych prac było wykształcenie młodej kadry badawczej, która stanie się naukowym zapleczem dla powstającego w Polsce programu budowy energetyki jądrowej.
EN
Main objectives of the Project were the scientific and development studies on techniques and technologies supporting management and storage of spent nuclear fuel and radioactive wastes formed in course of exploitation of the nuclear power plants with special emphasize of Polish nuclear industry. The detailed goals of the Project were: − separation of plutonium and other long-lived actinides; − decreasing the decay period of the radioactive components of spent nuclear fuel in the fast neutron reactors and/or by transmutation; − new technologies for reprocessing of the low- and medium-level radioactive wastes; − hybride processes for the purification of the radioactive wastes; − reducing radiotoxicity of the radioactive wastes by radiochemical methods; − physico-chemical conditioning technologies of the radioactive wastes and spent nuclear fuels; − fuel precursors for the IV generation reactors based on main components recovered from the spent nuclear fuels. Apart from the scientific goals, probably important aim of the Project was to create new generation of specialists needed for the development of nuclear energy industry in Poland.
PL
Plany rozwoju energetyki jądrowej w Polsce spowodowały kolejną falę zainteresowania występowaniem rud uranu w Polsce. Obecnie uran nie jest traktowany jako surowiec strategiczny i Polska potencjalnie może go pozyskać na zasadach rynkowych. Stąd też niniejsza analiza geologiczno-gospodarcza wystąpień uranu w Polsce nawiązuje ściśle do aktualnych światowych trendów w geologii i gospodarce uranem. Postępujący rozwój technologii odzysku uranu i nacisk na efektywność ekonomiczną przedsięwzięć górniczo-przeróbczych spowodowały, że zainteresowanie budzą przede wszystkim złoża występujące na powierzchni terenu lub na bardzo małych głębokościach (złoża kalkretowe, w granitach/alaskitach i typu metasomatycznego) nadające się do taniej eksploatacji metodą odkrywkową, złoża typu piaskowcowego nadające się do eksploatacji metodą podziemnego ługowania, występujące do głębokości 500 m, oraz bardzo bogate złoża związane z niezgodnościami proterozoicznymi lub polimetaliczne złoża w brekcjach hematytowych. Dotychczas największymi producentami uranu były Kanada i Australia, ale od 2008 r. największym producentem został Kazachstan, dynamicznie rozwijający produkcję żółtego keku ze złóż w piaskowcach metodą ługowania in situ. Także państwa afrykańskie, przede wszystkim Namibia i Niger, oraz Rosja i Uzbekistan należą do poważnych producentów światowych. Natomiast kraje Europy środkowo-zachodniej, będące w przeszłości ważnymi dostawcami uranu (Francja, b. Czechosłowacja, b. NRD) praktycznie zaprzestały wydobycia na swoim terenie, co było spowodowane wyczerpaniem się zasobów złóż z jednej strony i restrykcyjnymi względami środowiskowymi z drugiej. Wystąpienia uranu w Polsce znane są z dolnoordowickich łupków dictyonemowych obniżenia podlaskiego (typ łupków czarnych) i triasowych piaskowców syneklizy perybałtyckiej (złoża typu piaskowcowego). Głębokość występowania, niskie zawartości (łupki ordowiku), bardzo duża zmienność okruszcowania (piaskowce triasu) powodują, że nie mają one złożowego znaczenia i mogą być klasyfikowane co najwyżej jako wystąpienia rud U o niewielkich zasobach o charakterze prognostycznym lub perspektywicznym, występujące w trudnych warunkach geologiczno-górniczych oraz środowiskowo-krajobrazowych.
EN
The latest plans to develop a nuclear energy industry in Poland led to revival of interest in domestic uranium reserves. However, in the meantime uranium lost its status of a strategic raw material which opened possibilities to import that commodity. This makes it necessary to conduct geological-economic analysis of Polish uranium deposits in close reference to current world trends in development and management of uranium resources. The recent developments in technology ot uranium production and market requirements for economic efficiency of mining operations and processing focus on deposits occurring at the surface or shallow depths (calcrete deposits, those related to granites/alaskites or of the metasomatic type) suitable for inexpensive open-pit mining, deposits of the sandstones type at depths not greater than 500 m and suitable for mining by underground leaching, and very rich deposits related to Proterozoic unconformities or hematite breccias. Canada and Australia had been the main uranium producers until 2008 when the first place has been taken over by Kazakhstan thanks to dynamic growth of its production of yellow cake from sandstone uranium deposits mined by in situ leaching. The other leading producers include Namibia, Niger and some other African countries, as well as Russia and Uzbekistan. In turn, several important suppliers from the past (as e.g. France, former Czechoslovakia or former East Germany) have practically ceased out the production due to exhaustion of economic resources and/or environmental restrictions. In Poland uranium mineralization has been found in Lower Ordovician Dictyonema Shale in the Podlasie Depression (deposit of the black shale type) and Triassic Sandstones in the Peribaltic Syneclise (deposit of the sandstone type). The depth of burial combined with low concentrations of uranium (Ordovician Shale) and very high variability in mineralization (Triassic sandstones) make these deposits uneconomic and classifiable as uranium ore occurrences with limited resources and of prognostic or perspective importance, additionally limited by geological-mining conditions and environmental restrictions.
PL
W związku z rosnącym zapotrzebowaniem energetycznym przy jednoczesnym wzroście wymogów ochrony środowiska w Unii Europejskiej czynniki ekonomiczne zmuszają do pozyskiwania energii z innych źródeł niż węgiel. Autor wskazuje, że w Polsce konieczna będzie budowa elektrowni jądrowych. Energetyka jądrowa wymaga rygorystycznego spełniania warunków bezpieczeństwa nie tylko przy budowie i eksploatacji elektrowni jądrowych, ale także przy pozyskaniu surowca oraz odpowiedniej gospodarki odpadami promieniotwórczymi i składowaniem zużytego paliwa. Te zagadnienia zostały przedstawione między innymi na przykładzie przodującej szwedzkiej atomistyki, z którą Autor zapoznał się bezpośrednio podczas swojego pobytu w Szwecji. Autor zwraca uwagę na konieczność podjęcia w Polsce na szerszą skalę kształcenia w tej dziedzinie nie tylko specjalistów od energetyki jądrowej, ale także studiujących na wydziałach mechanicznych uczelni technicznych. Wiedza z tej dziedziny zwiększy też społeczną akceptację budowy w Polsce elektrowni jądrowych.
EN
Due to growing energy demand and strengthening regulations of environmental protection in the EU, economic factors make it necessary to obtain energy from sources other than coal. The Author points out that building nuclear power stations in Poland will be necessary. Nuclear power requires rigorous compliance with safety requirements not oniy during construction and maintenance of nuclear power stations, but also when it comes to extracting raw material and in regards to appropriate management of radioactive waste and storing used fuel. These issues were presented, among others, on the example of the leading Swedish atomism, with which the Author became acquainted during his stay in Sweden. The Author draws attention to the necessity of educating not only specialists in the field of nuclear power, but also those studying at mechanical departments of technical universities in Poland. He highlights that sound knowledge in this field will increase social acceptance of constructing nuclear power plants in Poland.
10
Content available remote MOX and UOX Fuel Melt Margin for European Pressurized Reactor
EN
Safety of Nuclear Power Plants (NPP) is the most important issue during its design and maintenance. Crucial area is nuclear isle where irradiated elements occur. During severe accidents in nuclear reactor core very dangerous is possibility of fuel melt which can lead to release of enormous amounts of radioactive elements. Nowadays Uranium Oxide fuels (UOX) as well as Mixed Oxides fuels (MOX) is under consideration for operating existing and planned NPPs. In this paper prepared Thermal-Hydraulics (TH) model and reliable thermal conductivity of UOX and MOX fuels relations are used for the margin to melt for UOX and MOX fuels calculations. This evaluation is performed for European Pressurized Reactor (EPR) geometry and thermophysical parameters.
11
Content available remote Energetyka jądrowa i środowisko
PL
Prawdziwie zapaleni ekolodzy to romantycy - są z zasady przeciwni wszystkiemu, co jest obce naturze. Czy to zakłady przemysłowe, miasta, czy elektrownie jądrowe. Jako romantycy chcą widzieć przyrodę taką, jaka była przed opanowaniem Ziemi przez człowieka...
PL
Rumunia jest jednym z prężniej rozwijających się państw w Europie. Nieodłącznym elementem stałego, jej rozwoju gospodarczego jest wzrost produkcji energii elektrycznej. W 2008 roku jej produkcja wyniosła ok. 65 TWh (z ponad 18 000 MWe mocy zainstalowanej) i była większa o 5% w porównaniu z rokiem poprzednim. Wyeksportowane zostało ponad 5 TWh energii, przy imporcie na poziomie 1 TWh. Ponad 40% mocy wytwórczych opartych jest na węglu, 17% na gazie ziemnym. Sporo, bo aż 25% ogółu mocy zainstalowane jest w elektrowniach wodnych. Udział mocy zainstalowanej w elektrowniach jądrowych wynosi ok. 13%.
PL
W czasach, kiedy dominującym tematem jest dekarbonizacja sektora energetycznego, warto zestawić ze sobą elektrownię jądrową i konwencjonalną. Parametry, które warto porównać, to z pewnością sprawność netto wytwarzania energii elektrycznej, powierzchnia niezbędna pod zabudowę, pewność dostaw nośników energii oraz koszty.
PL
W ostatnich latach widać wyraźną tendencję powrotu do energetyki atomowej. Zgodnie z planowanymi projektami uruchomienia nowych elektrowni atomowych, wielkość zainstalowanych mocy w skali międzynarodowej do roku 2030 znacząco wzrośnie.
18
Content available remote Wykorzystanie toru w energetyce jądrowej
PL
Obecnie stosowane technologie w energetyce jądrowej wykorzystują głównie, jedyny występujący w przyrodzie, izotop rozszczepialny - U235. W naturalnym uranie izotop ten stanowi 0,72% ogólnej masy uranu. Pozostała część to nierozszczepialny neutronami termicznymi izotop U238. Wprawdzie niewielka ilość tego izotopu, pod wpływem neutronów, ulega przekształceniu w rozszczepialny izotop Pu239, ale w rezultacie tylko około 1% wydobywanego ze środowiska uranu ulega rozszczepieniu i jest wykorzystywana do wytwarzania energii. Reszta idzie do odpadów. Jest to rozrzutna gospodarka tym surowcem energetycznym. Możliwość wykorzystania nierozszczepialnego izotopu U238 do wytwarzania rozszczepialnego izotopu Pu239 i Pu241 zwiększy zasoby energetyczne uranu ponad pięćdziesiąt razy. Jeszcze większe zasoby energetyczne są zawarte w torze. Pod wpływem neutronów powstaje z toru rozszczepialny izotop U233. Wykorzystanie toru jako materiału paliworodnego pozwoli zwiększyć zasoby energetyczne paliw jądrowych ponad stukrotnie w porównaniu do zasobów uranu wykorzystywanych w obecnych technologiach. Wykorzystanie zarówno U238 jak i Th232 w energetyce jądrowej wymaga zastosowania nowych technologii reaktorów energetycznych - reaktorów, w których przeprowadzano by procesy jądrowe wytwarzające z materiałów paliworodnych paliwo jądrowe. Są to w przypadku wykorzystania U238 reaktory powielające na neutronach prędkich - FBR (Fast Breeder Reactor). W przypadku wykorzystania toru procesy te mogą być prowadzone w odpowiednio przystosowanych do tych celów reaktorów wykorzystujących neutrony termiczne: lekkowodnych (PWR i BWR), reaktorach ciężkowodnych (PHWR-CANDU) oraz w budowanych obecnie reaktorach wysokotemperaturowych. W pracy przedstawiono podstawowe informacje o reakcjach jądrowych prowadzących do uzyskania izotopów rozszczepialnych w procesie naświetlania toru neutronami w reaktorze energetycznym, własności tych izotopów jako paliwa jądrowego, wykorzystanie toru w cyklach paliwowych reaktorów energetycznych oraz zalet i utrudnień w realizacji tego zamierzenia.
EN
Present-day nuclear power reactors are based mainly on U235 fission for power generation. The abundance of this isotope is only 0,72% in natural uranium, the rest is U238 isotope, non fissionable by thermal neutrons. The small amount of fission takes place in fissionable isotope Pu239 which was created during irradiation of U238 by neutrons. Finally, only about 1% of uranium extracted from environment is used in fission processes and is used for energy generation. The remains go to wastes. This way most of nuclear material is dissipated. Possibility of effective use of non fissionable isotope U238 to generate fissionable isotopes Pu239 and Pu241 will enlarge world energy resources of the uranium over fifty times. Much greater energy-resources are contained in thorium. Irradiation of thorium with neutrons leads to fissionable U233 production. Application of these processes for energy generation will enlarge the world nuclear energy resources more then hundredfold. The utilization both U238 and/or Th232 in the nuclear power generation demands use of new technologies of power reactors - reactors in which the "fertile" materials as U238 or Th232 can be transformed into fissile isotopes Pu239, Pu241 and U233. In case of U238 use for plutonium generation the breeder reactor with high energy neutrons FBR (Fast breeder reactor) can be used. In case of thorium fuel cycle, in which U233 isotope created is, the slightly modified power reactors (e.g. PWR, BWR, CANDU) can be used. The presented paper gives the basic information about nuclear reactions which lead to generation of fissionable isotopes by irradiation of thorium or depleted uranium (uranium with lover concentration of U235- mostly 0,2%) with neutrons in power reactors, properties of these isotopes as a nuclear fuel, experience with up to date use of thorium in power reactors and benefits and challenges of such technology.
19
Content available remote Terroryzm biologiczny i jądrowy
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.