Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  paliwo TRISO
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Prace nad paliwem do HTGR prowadzone w IBJ/ICHTJ
PL
W ramach planowanego w latach 50. XX wieku programu pokojowego wykorzystania energii atomowej w Polsce ośrodek żerański IBJ miał zająć się zagadnieniami zaopatrzenia w paliwo planowanych do budowy reaktorów jądrowych. IBJ-Żerań prowadził m.in. badania nad metodami ekstrakcji uranu z ubogich rud uranowych i otrzymywania z nich ditlenku uranu. Równocześnie na Żeraniu pracowano nad metodami wytwarzania powłok węglowych na ziarnach sferycznych z tlenku glinu, co mogło stanowić wstęp do produkcji paliwa do reaktorów wysokotemperaturowych, tzw. TRISO. Koncepcję wytwarzania tego paliwa, rozwijaną w latach 60. ubiegłego wieku, zarzucono w późniejszym czasie. Na nowo odżyła ona na początku wieku XXI, a w ostatnim czasie uzyskała praktyczny wymiar w postaci projektu Gospostrateg i pomysłu budowy reaktora eksperymentalnego HTR w Świerku.
EN
As part of the program for the peaceful use of atomic energy in Poland planned in the 1950s, the Żerań IBJ center was to deal with the issue of fuel supply for the planned construction of nuclear reactors. IBJ-Żerań ran, among others, research on methods of extracting uranium from poor uranium ores and obtaining uranium dioxide from them. At the same time, Żerań was working on methods of producing carbon coatings on spherical grains made of aluminum oxide, which could be an introduction to the production of fuel for high-temperature reactors, the so-called TRISO. The concept of producing this fuel, developed in the 1960s, was later abandoned. It was revived at the beginning of the 21st century, and recently gained a practical dimension in the form of the Gospostrateg project and the idea of building an experimental HTR reactor in Świerk.
PL
Pomyślne zastosowanie reaktorów wysokotemperaturowych w przemyśle będzie uzależnione m.in. od opanowania na skalę przemysłową produkcji paliwa TRISO spełniającego rygorystyczne wymagania dotyczące składu chemicznego i parametrów fizycznych. W ramach prac realizowanych w projekcie GOSPOSTRATEG-HTR opracowano w Instytucie Chemii i Techniki Jądrowej metodę otrzymywania prekursorów paliwa TRISO, ziaren sferycznych UO 2 , o średnicy około 0,5 mm, przy wykorzystaniu autorskiej koncepcji modyfikacji standardowej metody zol-żel. Wyniki uzyskane w badaniach laboratoryjnych zostały wykorzystane do opracowania wstępnych założeń techniczno-ekonomicznych dla zakładu produkującego prekursory paliwa TRISO. Określono plan kontroli laboratoryjnej procesu oraz specyfikację niezbędnego wyposażenia laboratorium. Specyfika TRISO, znacznie różniącego się od paliwa do reaktorów wodnych, implikuje konieczność opracowania specjalnej strategii postępowania po wyjęciu paliwa z reaktora. W projekcie rozważono różne scenariusze postępowania z zużytym paliwem TRISO.
EN
The successful use of high-temperature reactors in industry will depend, among others on mastering the industrial scale production of TRISO fuel that meets stringent requirements regarding chemical composition and physical parameters. As part of the work carried out under the GOSPOSTRATEG-HTR project, a method was developed at the Institute of Nuclear Chemistry and Technology for obtaining TRISO fuel precursors, spherical UO2 grains with a diameter of approx. 0.5 mm, using an original concept of modifying the standard sol-gel method. The results obtained in laboratory tests were used to develop preliminary technical and economic assumptions (ZTE) for the plant producing TRISO fuel precursors. A plan for laboratory control of the process and a specification of the necessary laboratory equipment were defined. The specificity of TRISO, which is significantly different from fuel for water reactors, implies the need to develop a special strategy for proceeding after removing the fuel from the reactor. The project considered various scenarios for dealing with spent TRISO fuel.
3
Content available Projekt GOSPOSTRATEG-HTR: rezultaty projektu
PL
Ochrona klimatu wymaga wdrożenia bezemisyjnych źródeł energii, takich jak reaktory jądrowe. Reaktory wysokotemperaturowe mogą stanowić doskonałe uzupełnienie wielkoskalowej energetyki jądrowej, poprzez zaopatrzenie rynku energetycznego w wysokotemperaturowe ciepło, do różnych procesów technologicznych. Pierwszym krokiem na drodze do wdrożenia technologii reaktorów wysokotemperaturowych w Polsce była realizacja projektu GOSPOSTRATEG-HTR. Niniejszy artykuł stanowi podsumowanie najważniejszych celów i osiągnięć projektu.
EN
Climate protection requires the deployment of zero-emission energy sources, such as nuclear reactors. Hightemperature reactors can be a perfect complement to large-scale nuclear energy by supplying the energy market with hightemperature heat for various technological processes. The first step towards the implementation of high-temperature reactor technology in Poland was the implementation of the GOSPOSTRATEG-HTR project. This article is a summary of the most important goals and achievements of the project.
PL
W artykule, o nieco przewrotnym tytule, opisano wyzwania stojące przed polskimi systemami ciepłowniczymi spowodowane koniecznością ich transformacji i modernizacji po to, aby osiągnąć główny i wyjątkowo ambitny cel unijnej polityki klimatycznej, tj. neutralność klimatyczną do r. 2050. Jest to również główne i wymuszone, lecz ogromnie kosztowne, zadanie stojące przed polskim ciepłownictwem/ogrzewnictwem. Przedsięwzięcie to jest wyjątkowo trudne ze względu na to, że podstawowym paliwem w polskich systemach ciepłowniczych jest węgiel kamienny, a ponadto systemy te są największe w UE. Plany transformacji systemów energetycznych sformułowane są w globalnych, regionalnych (UE) oraz krajowych projektach, przy czym wspólnym mianownikiem tych projektów jest minimalizacja zużycia paliw kopalnych i zastąpienie ich ciepłem oraz energią z zasobów OZE, poprawa efektywności wytwarzania, przesyłania i wykorzystania ciepła oraz energii, a także integracja systemów energetycznych, cieplnych i chłodniczych, w system multienergetyczny. To ostatnie przedsięwzięcie wymusza konieczność elektryfikacji gospodarki, a w tym także ciepłownictwa/ogrzewnictwa. Elektryfikacja ciepłownictwa/ogrzewnictwa związana jest z kolei koniecznością większego rozpowszechnienia w tej dziedzinie technologii pomp ciepła, które pozwalają na wyjątkowo efektywne i racjonalne wykorzystanie energii elektrycznej. Jednak, ze względu na to, że podaż energii pochodzącej ze źródeł wykorzystujących OZE jest nieprzewidywalna i niekoherentna w stosunku do potrzeb, a ponadto roczny stopień wykorzystania mocy zainstalowanej stosunkowo niewielki: elektrownie wiatrowe ‒ 22%, a fotowoltaiczne ‒ 10%, to źródła te muszą być wspomagane przez urządzenia konwencjonalne (reaktory jądrowe, urządzenia do termicznej utylizacji odpadów komunalnych, kotły opalane lokalną biomasę, biogazem itd.). Ponadto w systemach tych powinny być stosowane zasobniki ciepła i energii, a ich racjonalna eksploatacja wymaga wprowadzenia specjalnych rozwiązań umożliwiających inteligentne zarządzanie podażą energii oraz popytem na nią. Zagadnienia te są tematem artykułu, przy czym w ich analizie uwzględniono specyficzne uwarunkowania krajowe.
EN
The article, with a slightly perverse title, describes the challenges faced by the Polish district heating systems due to the necessity of their transformation and modernisation to achieve the main and extremely ambitious objective of the EU climate policy, i.e., climate neutrality by 2050. This is also the main and forced, but extremely costly task facing the Polish district heating/heating sector. This undertaking is extremely difficult because the basic fuel in Polish district heating systems is hard coal and since these systems are the largest in the EU. The plans for the transformation of energy systems are formulated in global, regional (EU), and national projects, the common denominator of which is to minimise the consumption of fossil fuels and replace them with heat and energy from RES resources, to improve the efficiency of heat and energy production, transmission, and use as well as to integrate energy systems, heating, and cooling, into a multi- energy system. The latter requires the electrification of the economy, including the heating sector. Electrification of the heating sector, in turn, is associated with the need for greater dissemination in this field of heat pump technology, which allows for extremely efficient and rational use of electricity. However, since the supply of energy from RES sources is unpredictable and incoherent to needs and, the annual utilisation rate of installed capacity is relatively low: wind power plants – 22% and photovoltaic – 10%, these sources must be supported by conventional equipment (nuclear reactors, municipal waste thermal treatment plants, boilers fired by local biomass, biogas, etc.). Moreover, heat and energy storage tanks should be used in these systems, and their rational operation requires the introduction of special solutions enabling intelligent energy supply and demand management. These issues are the subject of the article, while their analysis considers the specific national conditions.
PL
W artykule, o nieco przewrotnym tytule, opisano wyzwania stojące przed polskimi systemami ciepłowniczymi spowodowane koniecznością ich transformacji i modernizacji po to, aby osiągnąć główny i wyjątkowo ambitny cel unijnej polityki klimatycznej, tj. neutralność klimatyczną do r. 2050. Jest to główne i wymuszone, lecz ogromnie kosztowne, zadanie stojące przed polskim ciepłownictwem/ogrzewnictwem. Przedsięwzięcie to jest wyjątkowo trudne ze względu na to, że podstawowym paliwem w polskich systemach ciepłowniczych jest węgiel kamienny, a ponadto systemy te są największe w UE. Plany transformacji systemów energetycznych sformułowane są w globalnych, regionalnych (UE) oraz krajowych projektach, przy czym wspólnym mianownikiem tych projektów jest minimalizacja zużycia paliw kopalnych i zastąpienie ich ciepłem oraz energią z zasobów OZE, poprawa efektywności wytwarzania, przesyłania i wykorzystania ciepła oraz energii, a także integracja systemów energetycznych, cieplnych i chłodniczych, w system multienergetyczny. To ostatnie przedsięwzięcie wymusza konieczność elektryfikacji gospodarki, a w tym także ciepłownictwa/ogrzewnictwa. Elektryfikacja ciepłownictwa/ogrzewnictwa związana jest z kolei koniecznością większego rozpowszechnienia w tej dziedzinie technologii pomp ciepła, które pozwalają na wyjątkowo efektywne i racjonalne wykorzystanie energii elektrycznej. Jednak, ze względu na to, że podaż energii pochodzącej ze źródeł wykorzystujących OZE jest nieprzewidywalna i niekoherentna w stosunku do potrzeb, a ponadto roczny stopień wykorzystania mocy zainstalowanej jest stosunkowo niewielki: elektrownie wiatrowe ‒ 22%, a fotowoltaiczne ‒ 10%, to źródła te muszą być wspomagane przez urządzenia konwencjonalne (reaktory jądrowe, urządzenia do termicznej utylizacji odpadów komunalnych, kotły opalane lokalną biomasę, biogazem itd.). Ponadto w systemach tych powinny być stosowane zasobniki ciepła i energii, a ich racjonalna eksploatacja wymaga wprowadzenia specjalnych rozwiązań umożliwiających inteligentne zarządzanie podażą energii oraz popytem na nią. Zagadnienia te są tematem artykułu, przy czym w ich analizie uwzględniono specyficzne uwarunkowania krajowe.
EN
The article, with a slightly perverse title, describes the challenges faced by the Polish district heating systems due to the necessity of their transformation and modernisation to achieve the main and extremely ambitious objective of the EU climate policy, i.e., climate neutrality by 2050. This is also the main and forced, but extremely costly task facing the Polish district heating/heating sector. This undertaking is extremely difficult because the basic fuel in Polish district heating systems is hard coal and since these systems are the largest in the EU. The plans for the transformation of energy systems are formulated in global, regional (EU), and national projects, the common denominator of which is to minimise the consumption of fossil fuels and replace them with heat and energy from RES resources, to improve the efficiency of heat and energy production, transmission, and use as well as to integrate energy systems, heating, and cooling, into a multi- energy system. The latter requires the electrification of the economy, including the heating sector. Electrification of the heating sector, in turn, is associated with the need for greater dissemination in this field of heat pump technology, which allows for extremely efficient and rational use of electricity. However, since the supply of energy from RES sources is unpredictable and incoherent to needs and, the annual utilisation rate of installed capacity is relatively low: wind power plants – 22% and photovoltaic – 10%, these sources must be supported by conventional equipment (nuclear reactors, municipal waste thermal treatment plants, boilers fired by local biomass, biogas, etc.). Moreover, heat and energy storage tanks should be used in these systems, and their rational operation requires the introduction of special solutions enabling intelligent energy supply and demand management. These issues are the subject of the article, while their analysis considers the specific national conditions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.