Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  paździerze
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Pola leżące od zbioru roślin uprawianych w plonie głównym aż do wiosny są dotychczas niedostatecznie wykorzystywane do produkcji biomasy dla potrzeb energii odnawialnej. Do zagospodarowania tych pól dobrym rozwiązaniem może być uprawa roślin w poplonach ozimych i ścierniskowych. Dlatego celem badań zaprezentowanych w niniejszej pracy było poznanie możliwości uprawy konopi włóknistych w poplonach ścierniskowych do produkcji biomasy wykorzystywanej do pozyskiwania olejków eterycznych z kwiatostanów oraz włókna i paździerzy lub do produkcji biogazu ze słomy. Doświadczenia polowe wykonano w latach 2009-2013 na glebach o średniej przydatności rolniczej, w rejonie o niskich opadach atmosferycznych (<550 mm). Konopie włókniste odmiany Białobrzeskie porównywa-no z gorczycą białą odmiany Bamberka. Wymienione rośliny wysiewano w dwóch terminach: wczesnym – po jęczmieniu ozimym (7–15 lipca) w Zakładzie Doświadczalnym Stary Sielec i późnym – po zbożach i lnie (5–8 sierpnia) w Zakładzie Doświadczalnym Pętkowo. Uprawę roli wykonywano zgodnie z dobrą praktyką rolniczą a nawożenie mineralne w ilości (kg·ha–1): 90 N, 40 P2O5 i 60 K2O. Otrzymane wyniki doświadczeń wskazują na dużą przydatność uprawy konopi włóknistych w poplonach ścierniskowych do produkcji olejków eterycznych. Uzyskano bowiem 6,21 dm3·ha-1 we wczesnym (I) terminie siewu i 5,71 dm3·ha-1 w późniejszym (II) terminie siewu. Plony suchej masy konopi wahały się od 73,0 dt·ha-1 w I terminie siewu do 68,4 dt·ha-1 w II terminie siewu. Ze słomy pozyskiwano średnio 8,50 dt·ha-1 włókna ogółem i 35,8 dt·ha–1 paździerzy w I terminie siewu oraz 7,82 dt·ha-1 włókna ogółem i 33,4 dt·ha-1 paździerzy w II terminie siewu. Alternatywą dla włókna jest możliwość uzyskania biogazu. Wydajność biogazu ze słomy zebranej w I terminie siewu wynosiła 1272 N m3·ha–1, wobec 1192 N m3·ha-1 w późniejszym siewie. Gorczyca biała, w przeciwieństwie do konopi, dała wyższe plony suchej masy (67,7 dt·ha-1) w II terminie siewu niż w I terminie (62,4 dt·ha-1). Jednak z uwagi na dużą zawartość popiołu, chloru, siarki i metali ciężkich biomasa gorczycy białej jest mało przydatna do produkcji biogazu, dlatego powinna być stosowana jako zielony nawóz organiczny.
EN
Fields set aside after the main crop harvest up till spring are so far underused for the production of biomass for renewable energy. Cultivation of plants in winter catch and stubble crops might be a good solution for the management of such fields. Therefore, the aim of the research presented in this paper was to investigate the possibility of growing hemp in stubble crops for the production of biomass used for obtaining essential oils from inflorescences, fiber and shives, or the production of biogas from straw. Field experiments were performed in the years 2009–2013 on average agricultural suitability soils in an area of low precipitation (<550 mm). Hemp (Białobrzeskie cultivar) was compared with white mustard (Bamberka cultivar). These plants were sown in two dates: early – after winter barley (7–15 July) in the Stary Sielec experimental station and late – after cereals and flax (5–8 August) in the Pętkowo experimental station. Soil cultivation was performed in accordance with good agricultural practice and mineral fertilization amounted to (kg·ha-1): 90 N, 40 P2O5 and 60 K2O. Results of the experiments demonstrate high usefulness of hemp cultivation in stubble crops for the production of essential oils. 6.21 dm3·ha-1 of oils were obtained in the early (1st) sowing date and 5.71 dm3·ha-1 in the late (2nd) sowing date. Dry mass crops of hemp ranged from 73.0 dt·ha–1 in the 1st sowing date to 68.4 dt·ha-1 in the 2nd sowing date. An average of 8.50 dt·ha-1 of fiber in total and 35.8 dt·ha-1 of shives, were obtained from straw in the 1st sowing date and 7.82 dt·ha-1 of fiber in total and 33.4 dt·ha-1 of shives were obtained in the 2nd sowing date. The possibility of obtaining biogas is an alternative to fiber. Efficiency of biogas from straw harvested in the 1st sowing date amounted to 1272 N m3·ha-1, compared to 1192 N m3·ha-1 in the later sowing. White mustard, unlike hemp, gave higher dry mass crops (67.7 dt·ha-1) in the 2nd sowing date rather than in the 1st (62.4 dt·ha-1). However, due to the high contents of ash, chlorine, sulfur and heavy metals – biomass of white mustard is of little use for the production of biogas, therefore it should be used as a green organic fertilizer.
PL
Biomasa jest surowcem energetycznym, której spalanie, w przeciwieństwie do paliw kopalnych, nie powoduje zwiększania się bilansu emisji CO2 do atmosfery. Dwutlenek węgla emitowany podczas spalania biomasy jest absorbowany w fazie wzrostu rośliny. Z prowadzonych badań wynika, że 1 hektar (ha) upraw konopi wiąże około 2,5 tony CO2. Konopie charakteryzują się wysokim plonem biomasy wynoszącym nawet 15 t/ha.
EN
Biomass is an energy feedstock which, unlike fossil fuels, contributes no additional CO2 amounts to the atmosphere. Carbon dioxide emitted during combustion of biomass is absorbed during the plant growth. The research results show that 1 hectare (ha) of hemp assimilates approximately 2.5 t of CO2. Hemp is characterized by high biomass yield reaching even 15 t/ha.
3
Content available remote Palność kompozytów polimerowych wzmacnianych surowcami lignocelulozowymi
PL
Materiały lignocelulozowe coraz częściej wykorzystywane są do produkcji materiałów kompozytowych. Ich szeroka dostępność, coroczna odnawialność, niska cena oraz korzystny wpływ na właściwości mechaniczne spowodowały, że w ciągu kilku ostatnich lat znacząco wzrosło zainteresowanie nimi jako alternatywą dla włókien syntetycznych wzmacniających polimery. Stosowanie ekologicznych surowców naturalnych w miejsce wzmocnień z włókien szklanych czy węglowych, pozwala na uzyskanie kompozytów o mniejszej uciążliwości dla środowiska naturalnego i łatwiej poddających się recyklingowi [1-2]. Najwięcej badań poświęcono do tej pory kompozytom na bazie włókien naturalnych (sizal, konopie, len i inne) oraz polipropylenu [3-6].Nieliczne są doniesienia literaturowe dotyczące wykorzystania do wzmacniania polimerów lignocelulozowych surowców odpadowych np. paździerzy [7]Kompozyty te znalazły szerokie stosowanie, głównie w przemyśle motoryzacyjnym [8]. Szerokie możliwości zastosowania tych kompozytów w budownictwie zmuszają do otrzymania materiałów o zwiększonej stabilności termicznej. Zastosowanie odpowiednich modyfikacji materiałów lignocelulozowych w kierunku ich unie-palnienia zwiększa ich termiczną stabilność i przesuwa temperatury pirolizy w kierunku wyższych temperatur. W wyniku użycia środków ogniochronnych do impregnacji paździerzy wzmacniających polimer zmniejszyła się również szybkość wydzielania ciepła oraz szybkość ubytku masy kompozytów.
4
Content available Zastosowanie energetyczne konopi włóknistych
PL
Od 1 stycznia 2007 r. na podstawie rozporządzenia Rady (WE) nr 2012/2006 z dnia 19 grudnia 2006 r. Polska została objęta systemem wsparcia roślin energetycznych, do których można zaliczyć także konopie włókniste. W Polsce posiadamy wieloletnie tradycje uprawy konopi. Dysponujemy odpowiednimi warunkami klimatyczno-glebowymi. Mamy w rejestrze 4 odmiany jednopiennych konopi włóknistych (Białobrzeskie, Beniko, Silesia, Tygra) dające corocznie 10-15 ton biomasy z hektara. Szacuje się, ze 1 hektar konopi wiąże około 2,5 t CO2. Opracowane są technologie uprawy i zbioru słomy. Przeprowadzone w Instytucie badania wykazały, że konopie są cennym surowcem energetycznym (ciepło spalania ok. 18 MJ/kg). Źródłem energii jest nie tylko cała roślina, ale również produkt uboczny powstający z jej przerobu, tj. paździerze. Zgodnie z wymogami UE koniecznym staje się zagospodarowanie i utylizacja odpadów, w tym przypadku paździerzy, powstających w procesie przerobu słomy lnianej i konopnej. W zakładzie doświadczalnym Instytutu w Stęszewie przeprowadzono udane próby brykietyzacji paździerzy oraz zainstalowano pilotową linię brykietującą.
EN
Since January 1st , 2007, on the basis of EU Directive No 2012/2006 of 19th December 2006, Poland has been included in the system of subsidies for energy plants which covers also the hemp now. Hemp cultivation in Poland is of a long tradition. Polish climatic conditions are suitable for hemp growing. Biomass yielding capacity of registered hemp cultivars (Białobrzeskie, Beniko, Silesia, Tigra) exceeds 10-15 t/ha. It was estimated that 1 ha of hemp assimilate 2.5 t CO2 per year. Technologies of cultivation and harvest of straw are developed. The research conducted at the Institute showed that hamp is a valuable raw material for energy generation (combustion heat of about 18 MJ/kg). Not only the whole plants, but also shives - a by-product of hemp straw processing, may be a source of energy. According to the EU requirements it is necessary to utilize by-products of flax and hemp straw processing. Therefore, at Stęszew Experimental Station the successful trials were conducted on briquetting of the shives and a pilot line for briquette production was installed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.