Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  p-n structure
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
One of the key parameters determining detection properties of silicon PIN detector structures (p⁺-ν-n⁺ or n⁺-ν-p⁺) is minority carrier diffusion length in p-n junction regions p-n (p⁺-ν or n⁺-ν). The parameter concerned strongly depends on quality of the starting material and technological processes conducted and has a significant impact on detector parameters, in particular dark current intensity. Thus, the parameter must be determined in order to optimise the design and technology of detectors. The paper presents a method for measuring the spatial distribution of effective carrier diffusion length in silicon detector structures, based on the measurement of photoelectric current of a non-polarised structure illuminated (spot diameter of 250 μm) with monochromatic radiation of two wavelengths λ₁ = 500 nm (silicon penetration depth of around 0.9 μm) and λ₂ = 900 nm (silicon penetration depth of around 33 μm). The value of diffusion length was determined by analysing the spatial distribution of optical carrier generation and values of photoelectric currents.
2
Content available remote Conductivity type conversion in p-CdxHg1-xTe
EN
Investigations and comparative analysis of p-to-n type conductivity conversion processes on the identical samples of vacancy doped p-CdxHg1-xTe (x=0.2) under ion - beam milling (IBM) and anodic oxide annealing and on the identical samples of As-doped p-CdxHg1-xTe (x=0.22) under IBM and anodic oxide annealing have been carried out. The conductivity type conversion has been observed at the considerable depth of the vacancy doped material both under IBM or under anodic oxide annealing while in the case with As-doped material only under IBM. It was considered that conversion in all these processes was determined by the mercury interstitial diffusion from corresponding mercury diffusion source and recombination with its native acceptors-cationic vacancies (in the first case) or with donor complex formations (in the second one). It has been shown that in the vacancy-doped p-CdxHg1-xTe the effective diffusion coefficients for the mercury interstitials that determines the depth of the converted layer are equal each other at equal temperatures either under thermal annealing in the saturated mercury vapaur or anodic oxide annealing. It proves the identity of the mercury concentration in the diffusion source. Absence of the conversion under anodic oxide annealing in the As-doped p-CdxHg1-xTe is explained by insufficient Hg concentration in the source and it matches well with necessary condition for donor complex formation as it takes place under IBM.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.