Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  płyta porowata
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
It is proposed to use the Hall currents to model the transient magneto-hydrodynamic two liquid flows and heat transfer of ionized gases propelled by a common pressure gradient via a horizontal channel consisting of parallel porous plates. For the distributions of velocity and temperature, the principal partial differential equations that explain heat transfer flow under the chosen constraints are resolved. Graphical representations are given for the distributions of velocity, temperature, and heat transfer rates. This research will be carried out using non-conducting porous plate’s channel.
EN
To address the interfacial failure problem while maintain the main advantageous features in layered sandwich structures, a novel functionally graded (FG) porous plate is proposed where the continuous gradient in material properties based on a graded porosity offers a smooth stress distribution along the plate thickness so that the remarkable stress mismatch that leads to interfacial failure in the conventional sandwich structures can be avoided. The FG porous plate is assumed to be made of closed-cell Aluminium foams with Young's modulus, shear modulus, mass density and Poisson's ratio varying across the thickness. The mechanical property of closed-cell solids is used to determine the relationship between porosity coefficient and mass density coefficient. Based on the first-order shear deformation plate theory, the governing equations are derived and then solved by employing Chebyshev polynomials based Ritz method. The uniaxial, biaxial and shear buckling loads, bending deflections and stresses are obtained for fully clamped and simply supported porous plates. Numerical results show that compared with the conventional layered sandwich plate with a uniform porous core, the proposed FG porosity can eliminate the stress mismatch and yield significantly improved buckling and bending performances, promoting the advance and application of porous structures in multiple engineering areas.
EN
This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.
4
EN
An approximate solution to the flow past an infinite vertical porous plate in the presence of mass transfer is derived. Velocity and temperature profiIes are shown graphically for air and water. The numerical values of the skin-friction and the Nusselt number are listed in tables. The effects of differenl parameters like N (buoyancy ratio parameter), y (suction parameter), Pr (Prandtl number), E (Eckert number), Sc (Schmidt number) on the flow of air and water are discussed.
EN
A finite-difference analysis of transient free convection flow of a dissipative fluid past an infinite vertical porous plate is presented here. Velocity, temperature, skin-friction and Nusselt number are shown graphically and the effects of different parameters on the flow field are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.