Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  pęknięcia powierzchni
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Support frameworks of transport vehicles operate under varying terrain conditions under the influence of extreme climate and corrosive environments. When transporting cargo, dust is deposited on the surface of metal structures. The combination of dust and moisture creates an aggressive environment resulting in intense corrosion damage. The damage is caused by the defects of corrosion pitting, which occur on the surface and transform into corrosion cracks. Based on energy approaches, with the application of well-known results for the mathematical description of electrochemical reactions and the principles of fragile fracture mechanics, an analytical model of durability is proposed for the first time. The model determines the residual life of maximum loaded elements of undercarriages with surface cracks under the action of dynamic loads and corrosive environments. For this case, a set of mathematical relations in the form of a non-linear differential equation was developed, as well as the initial and final conditions for determining the life of vehicles’ structural elements with corrosive surface cracks. The analytical model implementation is proven by solving the problem of determining the residual life of a vehicle’s element, i.e., a steel plate, weakened by a semi-elliptical surface crack, which is under the action of dynamic loads in a 3% sodium chloride solution. The insignificant increase in the crack’s initial size is proven to greatly reduce the period of its subcritical growth. The developed model was applied to define the residual life of thin-walled elements of structures with surface cracks.
EN
Metal pieces wear out due to variable loading, because cracks formed on their surface of them. In order to increase useful life of metal pieces with the help of different methods of welding, surface cracks are repaired. In this research, performance of the diffusion welding of pure iron powder through magnetic induction evaluated for repairing structural steel surface cracks. First, four specimens prepared including one control specimen and other three specimens grooved specimens in length of 6.25mm and in depth of 1mm and groove width in the sizes of 0.5, 0.75 and 1mm. Then by a coil, the induced current created in the piece surface. After crossing the current, the powder melted and the groove repaired due to diffusion welding. To prevent oxidation, the atmosphere inside the coil filled with argon gas. The results show that after repairing surface groove, tensile strength of the repaired specimens reached to the tensile strength of control specimen with the margin of 7.5%
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.