Although the number of studies documenting the presence of Microplastics (MP) in fish is increasing, research studies focused on its detoxification are very limited. In this study, rainbow trout ( Oncorhyncus mykiss) were randomly divided into two groups after being fed with MPs (15% polypropylene [PP] +15% polyethylene [PE]) for 2 months. MP excretion without any application (PP+PE) in group I fish, and excretion of MPs with hydrogen-rich water (HRW) application (PP+PE+HRW) in group 2 were investigated under semi-static conditions for 21 days. This effectwas also compared by using positive and negative control groups (Control[no treatment, free PP, PE or/and HRW] and only HRW group). In thisdirection, the following were determined: PP+PE chronic toxicity in aquatic organisms, the toxicity mechanism and the effect of HRW as a possibletreatment method in blood tissue; with hematological indices ([RBC count [RBC], leukocyte count [WBC], hemoglobin value [Hb], hematocrit ratio [Hct], platelet count [PLT], hemoglobin count per erythrocyte [MCHC],mean hemoglobin amount per erythrocyte [MCH] and mean erythrocyte volume [MCV]) in other tissues (liver, gill and brain tissue) oxidative stress response (catalase [CAT]), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), glutathione (GSH), reactive oxygen products (ROS), malondialdehyde ([MDA] levels), DNA damage (8-OHdG: 8-Hydroxy-2-Deoxyguanosine), and the apoptosis (caspase 3) levels were investigated. In addition, acetylcholinesterase enzyme (AChE) activity, which is important in neurotoxicity pathways in the brain, wasdetermined. The presence of plastics (PP/PE) in target tissues (muscle, liver,gill and gastrointestinal tract) was also obtained.The results showed that PP+PE caused toxicity in all three tissues. MPs showed an inhibiting effect on antioxidant enzyme activities and an inductive effect on MDA, ROS, 8-OHdG, and caspase 3 levels. HRW showed a mitigating effect on MP-mediated toxicity in O. mykiss brain, blood, gill, and liver by controlling the ROS/ GSH/MDA pathway. HRW can be suggested as a cost-effective and eco-friendly curative for the protection of fish from the oxidative damages produced by the ingestion of microplastics.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.