Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  osteochondral defects
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Biphasic monolithic materials for the treatment of osteochondral defects were produced from polysaccharide hydrogel, gellan gum (GG). GG was enzymatically mineralized by alkaline phosphatase (ALP) in the presence of calcium glycerophosphate (CaGP). The desired distribution of the calcium phosphate (CaP) mineral phase was achieved by limiting the availability of CaGP to specific parts of the GG sample. Therefore, mineralization of GG was facilitated by the diffusion of CaGP, causing the formation of the CaP gradient. The distribution of CaP was analyzed along the cross section of the GG. The formation of a CaP gradient was mainly affected by the mineralization time and the ALP concentration. The formation of CaP was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and mapping, as well as energy-dispersive X-ray spectroscopy (EDX) mapping of the interphase. The microstructure of mineralized and non-mineralized parts of the material was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showing sub-micrometer CaP crystal formation, resulting in increased surface roughness. Compression tests and rheometric analyzes showed a 10-fold increase in stiffness of the GG mineralized part. Concomitantly, micromechanical tests performed by AFM showed an increase of Young’s modulus from 17.8 to more than 200 kPa. In vitro evaluation of biphasic scaffolds was performed in contact with osteoblast-like MG-63 cells. The mineralized parts of GG were preferentially colonized by the cells over the non-mineralized parts. The results showed that osteochondral scaffolds of the desired structure and properties can be made from GG using a diffusion-limited enzymatic mineralization method.
EN
In this work nanocomposite porous pins were implanted into rabbit knees. The pins were made of biodegradable synthetic poly-L/DL-lactide (80:20) which was modified with nanometric hydroksyapatite particles (HAp) and covered with biopolymer layer of sodium alginate (NA). In vivo experiments were conducted on a 4-element group of the New Zealand rabbits. Osteogenesis was observed using scanning electron microscope (SEM/EDS) after 12 weeks of implantation.
EN
In this work nanocomposite porous pins were implanted into rabbit knees. The pins were made of biodegradable synthetic poly-L/DL-lactide (80:20) which was modified with nanometric hydroksyapatite particles (HAp) and covered with biopolymer layer of sodium alginate (NA). In vivo experiments were conducted on a 4-element group of the New Zealand rabbits. Osteogenesis was observed using scanning electron microscope (SEM/EDS) after 12 weeks of implantation.
EN
The degeneration of articular cartilage results from osteoarthritis and many other forms of severe arthritis. Current treatments for cartilage repair are less than satisfactory, and rarely restore a full function or return the tissue to its natural state. The leading strategies in the treatment are aimed at the transplantation of cells and/or the use of various biological grafts, bioactive agents, or biologically compatible implant matrices. The insertion of a crushed autologous bone graft has been reported as a possible therapy. However, the regenerative quality of the tissue was less than 70% of healthy cartilage for fragments and controls. The implantation of cycloolefin-blend 3D-cylinders with hydrogel scaffolds on their proximal parts and with the applications of type I collagen films is one of several surgical therapies. The replacement and continuous biomechanical properties of the subchondral bone play an important role in the morphology and the quality of chondrogenesis. The initial biomechanical stability of COC-blend polymer replacements in the subchondral bone contributes to the formation of a new cartilage tissue. The initial bearing capacities of the implanted tissue/replacements and vertical positions of the replacements have a principal influence upon both the quality and the quantity of new articular cartilage.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.