Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  orbit integration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote From tensor to vector of gravitation
EN
Different gravitational force models are used for determining the satellites’ orbits. The satellite gravity gradiometry (SGG) data contain this gravitational information and the satellite accelerations can be determined from them. In this study, we present that amongst the elements of the gravitational tensor in the local north-oriented frame, all of the elements are suitable for this purpose except Txy. Three integral formulae with the same kernel function are presented for recovering the accelerations from the SGG data. The kernel of these integrals is well-behaving which means that the contribution of the far-zone data is not very significant to their integration results; but this contribution is also dependent on the type of the data being integrated. Our numerical studies show that the standard deviations of the differences between the accelerations recovered from Tzz, Txz and Tyz and those computed by an existing Earth´s gravity model reduce by increasing the cap size of integration. However, their root mean squared errors increase for recovering Ty from Tyz. Larger cap sizes than 5 on is recommended for recovering Tx and Tz but smaller ones for Ty.
2
Content available remote Simplification of geopotential perturbing force acting on a satellite
EN
One of the aspects of geopotential models is orbit integration of satellites. The geopotential acceleration has the largest influence on a satellite with respect to the other perturbing forces. The equation of motion of satellites is a secondorder vector differential equation. These equations are further simplified and developed in this study based on the geopotential force. This new expression is much simpler than the traditional one as it does not derivatives of the associated Legendre functions and the transformations are included in the equations. The maximum degree and order of the geopotential harmonic expansion must be selected prior to the orbit integration purposes. The values of the maximum degree and order of these coefficients depend directly on the satellite’s altitude. In this article, behaviour of orbital elements of recent geopotential satellites, such as CHAMP, GRACE and GOCE is considered with respect to the different degree and order of geopotential coefficients. In this case, the maximum degree 116, 109 and 175 were derived for the Earth gravitational field in short arc orbit integration of the CHAMP, GRACE and GOCE, respectively considering millimeter level in perturbations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.