Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  orange peel
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Water pollution has increased due to human activities; consequently, it is essential to treat both surface water and ground water so they are suitable to meet the needs of the population. This study will discuss water treatment intended to remove antimony. Antimony (Sb) is classed as a high-priority toxic pollutant because of its adverse effects on ecosystems and human health. There are several methods for removing antimony from water, including adsorption, coagulation, ion exchange, and electrochemical treatment. This study focuses on the adsorption method as researchers have, in recent times, been seeking adsorbents that are environmentally friendly and cost-effective and that do not leave a residue. The study investigates the use of orange peels treated with acetic acid as an adsorbent to remove antimony ions from a simulated aqueous solution. The results revealed that 5 g of treated orange peels is 98.5% effective at treating water at a pH of 6, for a contact time of 150 minutes, at a mixing speed of 450 rpm.
EN
Biosorption of Zn(II) and Cd(II) ions from aqueous solutions onto organic waste – orange peel, hazelnut shell, and walnut shell was studied using batch adsorption experiments. In the biosorption studies, equilibrium metal ion concentration was determined. Experimental data obtained were analysed in terms of Freundlich, Langmuir, Temkin, Dubinin–Radushkevich, Redlich–Peterson, Sips, Toth, and Khan isotherms. The results of the study showed that orange peel, hazelnut shell, and walnut shell can be adequately used as low-cost alternatives for the removal of Zn(II) and Cd(II) ions from aqueous solutions with maximum sorption capacities of 15.51 and 19.8 mg/g, 11.55 and 16.65 mg/g, and 26.60 and 21.10 mg/g, respectively. The highest removal efficiency of Zn(II) and Cd(II) ions was obtained for hazelnut shells. The process was fast and about 90% of metal ions were removed by all the studied biosorbents. The sorption process was possibly chemisorption occurring on a heterogeneous surface.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.