The problem of determining an optimal training schedule for locally recurrent neural network is discussed. Specifically, the proper choice of the most informative measurement data guaranteeing the reliable prediction of neural network response is considered. Based on a scalar measure of performance defined on the Fisher information matrix related to the network parameters, the problem was formulated in terms of optimal experimental design. Then, its solution can be readily achieved via adaptation of effective numerical algorithms based on the convex optimization theory. Finally, some illustrative experiments are provided to verify the presented approach.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.