Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  optimal boundary control
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We consider the problem of steering a finite string to the zero state in finite time from a given initial state by controlling the state at one boundary point while the other boundary point moves. As a possible application we have in mind the optimal control of a mining elevator, where the length of the string changes during the transportation process. During the transportation process, oscillations of the elevator-cable can occur that can be damped in this way. We present an exact controllability result for Dirichlet boundary control at the fixed end of the string that states that there exist exact controls for which the oscillations vanish after finite time. For the result we assume that the movements are Lipschitz continuous with a Lipschitz constant, whose absolute value is smaller than the wave speed. In the result, we present the minimal time, for which exact controllability holds, this time depending on the movement of the boundary point. Our results are based upon travelling wave solutions. We present a representation of the set of successful controls that steer the system to rest after finite time as the solution set of two point-wise equalities. This allows for a transformation of the optimal control problem to a form where no partial differential equation appears. This representation enables interesting insights into the structure of the successful controls. For example, exact bang-bang controls can only exist if the initial state is a simple function and the initial velocity is zero.
EN
The quadratic loss penalty is a well known technique for optimization and control problems to treat constraints. In the present paper they are applied to handle control bounds in a boundary control problems with semilinear elliptic state equations. Unlike in the case of finite dimensional optimization for infinite dimensional problems the order of convergence could only be roughly estimated, but numerical experiments revealed a clearly better convergence behavior with constants independent of the dimension of the used discretization. The main result in the present paper is the proof of sharp convergence bounds for both, the finite und infinite dimensional problem with a mesh-independence in case of the discretization. Further, to achieve an efficient realization of penalty methods the principle of control reduction is applied, i.e. the control variable is represented by the adjoint state variable by means of some nonlinear function. The resulting optimality system this way depends only on the state and adjoint state. This system is discretized by conforming linear finite elements. Numerical experiments show exactly the theoretically predicted behavior of the studied penalty technique.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.