Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  opposed
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In order to maximise engine heat efficiency an engines charge flow must be properly designed -especially its swirl and tumble ratio. A two-stroke compression-ignition opposed piston engine reacts to engine swirl differently compared to a standard automotive engine with axially symmetric combustion chamber. In order to facilitate direct fuel injection, high-pressure injectors must be positioned from the side of combustion chamber. Depending on the combustion chamber geometry the swirling gases impact greatly how the injection stream is formed. If the deformation is too high the high temperature combustion gases can hit the piston surface or get into gaps between the pistons. This greatly affects the heat lost to the pistons and raises their local temperature. More atomised injection stream is more prone to swirling gas flow due to its reduced droplet size and momentum. The paper presents simulation results and analyses for different intake process induced swirl ratios and different types of combustion chambers in an experimental aviation opposed piston engine.
EN
The research presents a review and comparison of different engine constructions. Investigated engines included crankshaft engines, barrel engine, opposed-piston engines and theoretical models to present possible variations of piston motion curves. The work comprises also detailed description of a numerical piston engine model which was created to determine the impact of the cycle parameters including described different piston motion curves on the engine efficiency. Developed model was equipped with Wiebe function to reflect a heat release during combustion event and Woschini’s correlation to simulate heat transfer between the gas and engine components.Various scenarios of selected engine constructions and different working conditions have been simulated and compared. Based on the results it was possible to determine the impact of different piston motion curves on the engine cycle process and present potential efficiency benefits.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.