Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  operator Caputo
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents analysis of the positivity for a two-dimensional temperature field. The process under consideration is described by the linear, infinite-dimensional, noninteger order state equation. It is derived from a two-dimensional parabolic equation with homogenous Neumann boundary conditions along all borders and homogenous initial condition. The form of control and observation operators is determined by the construction of a real system. The internal and external positivity of the model are associated to the localization of heater and measurement. It has been proven that the internal positivity of the considered system can be achieved by the proper selection of attachment of a heater and place of a measurement as well as the dimension of the finite-dimensional approximation of the considered model. Conditions of the internal positivity associated with construction of real experimental system are proposed. The postivity is analysed separately for control and output of the system. This allows one to analyse the positivity of thermal systems without explicit control. Theoretical considerations are numerically verified with the use of experimental data. The proposed results can be applied i.e. to point suitable places for measuring of a temperature using a thermal imaging camera.
EN
Closed form solutions for mathematical systems are not easy to find in many cases. In particular, linear systems such as the population growth/decay model, RLC circuit, mixing problems in chemistry, first-order kinetic reactions, and mass spring damper system in mechanical and mechatronic engineering can be handled with tools available in theoretical study of linear systems. One such linear system has been investigated in the present research study. The second order linear ordinary differential equation called the mass spring damper system is explored under the Caputo type differential operator while using the Sumudu integral transform. The closed form solution has been found in terms of the Fox H-function wherein different aspects of the solution can be obtained with variation in α ∈ 2 (1;2] and β ∈ 2 (0;1]: The classical mass spring damper model is retrieved for α = β = 1:
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.