The article deals with ball-type safety-overrunning clutches' elastic characteristics in overload mode. Main semi-couplings geometric parameters, particularly ball stroke and semi-couplings twisted angles, affecting operation speed and clutch elastic torque considered and obtained expressions for this parameters determination. Main clutch parts force interaction features in the final overload operation period analyzed and ratios for the clutch final period load are obtained. Based on current and previous studies, the expressions for elastic torque in the overload operation period are estimated. Obtained results could become the tool for the dynamics analysis of studied clutch-equipped driving operation during the clutch reengagement in overload mode. It is shown the expedience of using in high-speed driving clutches with large values of grooves to clutch axis inclination angle to decrease dynamic loads in driving, because in little and middle angles values provide nosedive dropping of final stage torque which can become a source of intense oscillations in the driving equipped with clutch in overload mode.
In a continuing effort to realize the simultaneous hydrogen and methanol production via the auto-thermal methanol synthesis process, the effect of two different hydrogen redistribution strategies along a double-membrane reactor has been considered. A steady-state one-dimensional heterogeneous model was developed to compare two strategies applied in the operation of the auto-thermal methanol synthesis. It was found that the counter-current configuration exhibited the better performance compared to the reactor operated in the co-current mode from both the economic and environmental points of view. This superiority is ascribed to the establishment of a more favourable temperature profile along the reactor and also more hydrogen extraction from the reaction zone. Moreover, the influence of some operating variables was investigated on the performance of the auto-thermal double-membrane reactor in the counter-current configuration. The results suggest that utilizing this configuration for pure hydrogen and methanol production could be feasible and beneficial.
Operation mode simulation methods are based on selection of trim coil currents in the isochronous cyclotron for formation of the required magnetic field at a certain level of the main coil current. The traditional current selection method is based on finding a solution for all trim coils simultaneously. After setting the calculated operation mode, it is usually necessary to perform a control measurement of the magnetic field map and to repeat the calculation for a more accurate solution. The new current selection method is based on successively finding solutions for each particular trim coil. The trim coils are taken one by one in reverse order from the edge to the center of the isochronous cyclotron. The new operation mode simulation method is based on the new current selection method. The new method, as against the traditional one, includes iterative calculation of the kinetic energy at the extraction radius. A series of experiments on proton beam formation within the range of working acceleration radii at extraction energies from 32 to 59 MeV, which were carried out at the AIC144 multipurpose isochronous cyclotron (designed mainly for the eye melanoma treatment and production of radioisotopes) at the INP PAS (Kraków), showed that the new method makes unnecessary any control measurements of magnetic fields for getting the desired operation mode, which indicates a high accuracy of the calculation.
The technical presentation described the process system of the coal handling plant for the 950 MW brown coal block with optimised plant engineering of the Niederaussem power plant from the RWE Energie AG.
PL
Raport przedstawia techniczną prezentację opisującą porównanie procesu zakładu nawęglania bloku o mocy 950 MW opartego na węglu brunatnym z konstrukcyjnie zoptymalizowanym zakładem Elektrowni Niederaussem z koncernu RWE Energii AG.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.