Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  one-part geopolymer
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The one-part geopolymer binder was synthesis from the mixing of aluminosilicate material with solid alkali activators. The properties of one-part geopolymers vary according to the type and amount of solid alkali activators used. This paper presents the effect of various sodium metasilicate-to-sodium aluminate (NaAlO2/Na2SiO3) ratios on fly ash-based one-part geopolymer. The NaAlO2/Na2SiO3 ratios were set at 1.0 to 3.0. Setting time of fresh one-part geopolymer was examined through Vicat needle apparatus. Mechanical and microstructural properties of developed specimens were analysed after 28 days of curing in ambient condition. The study concluded that an increase in NaAlO2 content delayed the setting time of one-part geopolymer paste. The highest compressive strength was achieved at the NaAlO2/Na2SiO3 ratio of 2.5, which was 33.65 MPa. The microstructural analysis revealed a homogeneous structure at the optimum ratio. While the sodium aluminium silicate hydrate (N-A-S-H) and anorthite phases were detected from the XRD analysis.
EN
This study investigates the tensile performance a one-part strain hardening geopolymer composite (SHGC) reinforced by ultra-high-molecular-weight polyethylene (PE) fibers. The developed composite as a “dry mix” uses a small amount of solid activator rather than large quantities of commonly used alkaline solutions and eliminates the necessity for heat curing. The quantitative influences of curing condition (heat and ambient temperature curing) and type of fiber (poly vinyl alcohol (PVA) and PE fibers) on the macroscale properties of the matrix and composite including workability, density, compressive strength, and uniaxial tensile performance were evaluated. A micromechanics-based investigation was performed to explain the experimentally observed macroscopic high tensile ductility of the developed one-part PE-SHGCs. The investigation involved determination of the matrix fracture properties and the fiber–matrix interface properties using fracture toughness tests and single-fiber pullout tests, respectively. The fiber-bridging constitutive law of the composites was computed via a micromechanics-based model to link the material microstructures to macroscopic composite tensile performance. The results indicated that the ambient temperature curing increased the compressive and tensile strengths, but reduced the tensile ductility of the one-part PE-SHGCs. The one-part PE-SHGCs exhibited lower compressive and tensile strengths, but higher tensile ductility compared to the one-part PVA-SHGC.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.