Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  oily sludge
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study investigated the potential of biogas recovery from refinery oily sludge (ROS) inoculated with animals’ manure by co-digestion of in lab-scale biodigesters at mesophilic conditions. Cow dung (CD), cattle manure (CM), and poultry manure (PM) were utilized as co-substrates. The biogas production from the co-digestion process exceeds its production from uninoculated ROS by approximately 67.5 %, 22.13% and 21.6% for PM, CM, and CD, respectively. Kinetics of the co-digestion process was well described by the modified Gompertz model. The predicted and experimental values of biogas production were well fitted with R2 > 0.96, suggesting favorable conditions of the digestion process. New approach for recycling the residual digestate to replace freshwater in concrete mixes was carried out. Results of examining the mechanical properties of the residual digestate-modified concrete mixes demonstrated a potential sustainable approach for the disposal of residual digestate in concrete mixes.
EN
In this work, oily compost leachate (OCL) generated during oily sludge composting was treated by UV/TiO2. OCL subsamples, gathered bi-weekly from the composting process, were thoroughly mixed and then filtered to reduce the solution turbidity. The effects of initial chemical oxygen demand (COD) concentration, UV type (A and C), pH (3, 7, and 11), reaction time (30, 60, 90, and 120 min), and TiO2 concentration (0.5, 1, and 2 g L-1) on the total petroleum hydrocarbons (TPH) and COD removal from OLC were examined. The results showed that the efficiency of the process improved with the increase in TiO2 concentration and reaction time and the decrease in pH and pollutant concentration. In the optimal conditions (UV-C, TiO2 concentration of 1 mg L-1, reaction time of 90 min, and pH of 3), 52.29% of TPH was removed. Moreover, 36.69 and 48.3% of TPH was reduced by UV-A/TiO2 and UV-C/TiO2, respectively in real conditions of OCL (pH = 6.3, COD = 1501. 24 mg L-1, and TPH = 170.12 mg L-1) during the 90 min reaction time. The study verified that UV/TiO2 has the potential to be applied to treat OCL.
EN
Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.