Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  oil-contaminated soil
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The composition of microbial contaminants of soil samples polluted with oil and oil products from oil depots of ports in southern Ukraine was investigated, and the possibility of their bioremediation by microorganisms present in the soil was determined. The microbiological landscape of the soil contaminated with oil and oil products was established, the quantitative and qualitative characteristics, group and dendrological composition of microorganisms as well as their potential ability to biodegrade petroleum hydrocarbons were determined. The degree of sanitary and ecological contamination of the samples was characterized by the number of the main groups of microorganisms – mesophilic aerobic and facultative anaerobic microorganisms (MAFAnM), molds, yeasts, as well as the dominance of MAFAnM by 3-5 orders among the studied groups of microorganisms. According to MAFANM, the number of thermophilic bacteria, titers of nitrifying bacteria, E. coli, Clostridium perfringens, bacteria of the genus Proteus, and the degree of oil contamination, the soil samples studied are characterized as contaminated and heavily contaminated. According to the study of morphological, tintorial, cultural, biochemical properties, 130 species were identified and 9 morphogroups of bacteria in oil-contaminated soil samples were determined. A dendrogram was constructed based on the set of studied properties of the isolated microorganisms. According to the results of the screening, the microorganisms isolated from the contaminated soil samples are capable of biodegradation of long-chain alkanes of petroleum hydrocarbons. The identified groups of microorganisms can be arranged in the following order of increasing indicator: Bacillus subtilis and Paenibacillus macerans ˂ Paenibacillus polymyxa ˂ Bacillus licheniformis ˂ Bacillus thuringiensis ˂ Bacillus megaterium ˂ Bacillus pumilis ˂ Bacillus cereus ˂ Paenibacillus circulans. Paenibacillus circulans and Bacillus cereus were identified as the most promising strains, biotransforming up to 48 percent of the total amount of hydrocarbons.
EN
This study aims to investigate the biosurfactant production capabilities of bacterial strains isolated from oil-contaminated soil samples. Employing a comprehensive methodological approach, we collected soil samples from thirty different fuel pumps and conducted an extensive screening of bacterial isolates using various tests such as hemolytic activity, emulsification index, blue agar plate method, and drop collapsing test. The results revealed significant biosurfactant production among certain isolates, specifically highlighting the effectiveness of two particular strains. This paper presents a detailed analysis of these strains, including their optimal growth conditions in terms of pH, temperature, carbon, and nitrogen sources. Our findings indicate a notable potential of these bacterial strains in biosurfactant production, with implications for environmental bioremediation, particularly in oil pollution contexts. The study also sheds light on the limitations encountered and underscores the originality of the research in exploring biosurfactant production in a novel context. This study contributes to the field by offering insights into the effective utilization of microbial strains for biosurfactant synthesis, which is crucial for sustainable and eco-friendly bioremediation practices.
EN
At present, the development and optimization of methods to eliminate the consequences of soil contamination with hydrocarbons is gaining increasing economic and social importance; it is the basis for sustainable development of the oil industry. Within the frames of the scientific research, a review of literature was carried out in the sphere of utilization of organic wastes from the food industry in reclamation of oil-contaminated soils; an experimental study of efficiency of the use of wastes from the brewing industry in the process of bioremediation of oil-contaminated soils was conducted and phytotoxicity of these wastes was determined. Experimental research was conducted at different initial concentrations of oil in the soil, which allowed to establish the optimal range of oil pollution level at which the efficiency of brewing waste use is the highest. Thus, at low concentrations (1000–2000 mg/kg), the dynamics of oil concentration decrease in the soil remained preserved throughout the whole duration of the experiment, and the efficiency of oil destruction in the soil exceeded 98%, which confirmed the overall efficiency of application of brewing waste for reclamation of oil-contaminated soils.
EN
Features of change of phytotoxic influence of the soil polluted with oil at the use of a complex biological product based on strains of microorganisms Bacillus amyloliquefaciens subsp. plantarum NSh-2 and Bacillus subtilis NSh-4 in the laboratory were investigated. The level of destruction of petroleum hydrocarbons at different combinations of pollutant and biological product concentrations was determined, as well as in the absence of oil pollution to ensure the assessment of the biological product’s impact on the environment. Soil phytotoxicity was assessed by the method of biotesting using radish seeds of the Sora variety by the ratio of seedling height and the obtained mass of organic matter.
EN
The research was conducted on the territory of Nadvirna oil and gas district of South-Hvizdetsky oil field of Ivano-Frankivsk region during 2016-2020. The production activity at the research site was stopped 45 years ago. Energy crops the Miscanthus (Miscanthus giganteus) and switchgrass (Panicum virgatum) were planted and sown on model research plots with an estimated area of 25 m2 in triplicate. The miscanthus was planted manually according to the scheme 0.50 × 0.70 m. According to studies on the oil-contaminated soils, with the introduction of different sedimentation rates wastewater, the content of the Lead when growing the miscanthus increases with the introduction of SS 40 t/ha and N10P14K58 (option 6) and is 4.30 mg/kg of soil. However, when growing the switchgrass with the same fertilizer application, the Lead content is 3.97 mg/kg of soil, which is 0.33 mg/kg of soil less than growing the miscanthus. The concentration coefficients of the gross forms of the Lead vary in the range of 1.01–1.09 during the cultivation of the miscanthus. The concentration coefficient of the gross forms of the Cadmium varies in the range of 1.09–1.56, the maximum remains in the options for the introduction of the sewage sludge at a rate of 40 t/ha and N10P14K58. The concentration coefficients of the gross forms of the Lead for growing the switchgrass 20–40 t/ha (option 4–6) are equal to 1.02–1.15. The concentration coefficient of the gross forms of the Cadmium varies between 1.18 and 1.49.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.