Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  odporność na zderzenia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents a simulation method for testing the energy absorbed by the absorption systems of rail vehicles equipped with a soft absorber. The method makes it possible to verify the actual behavior of the absorption system during the impact of two vehicles. The first part of this paper describes the structural elements of a railway vehicle performing the function of an energy absorber during an impact according to the EN 15227 standard. A soft absorber, the so-called honeycomb, is analyzed in detail. It is a multicellular structure often used in rail vehicles due to its properties of controlled deformation. The literature review describes the research conducted on this element. The analytical part of this paper describes a general mathematical model of a rail vehicle collision according to Scenario 1, in which the collided vehicles are of the same type, and Scenario 2 for vehicles of different types. A computational impact simulation for the two scenarios has been carried out using the specialist software Mathcad, and the results are presented in graphs. The paper ends with conclusions presenting the application possibilities of the developed tool.
EN
Every day on roads many scenarios of accidents may occur. One of the measures to minimize their consequences is road safety barriers. Finite Element analyses are being increasingly used to support the physical testing of these devices. The paper addresses the issue of a secondary impact into the previously damaged w-beam guardrail system. This situation belongs to one of the most dangerous which can happen on roads and may cause serious hazards, especially if the vehicle goes through the barrier. To evaluate the crashworthiness of the road barrier, the computational model of the crash test was developed and validated against the full-scale crash test. Then two simulations of TB32 crash tests were conducted on both damaged and undamaged road barriers to assess the influence of damage on the effectiveness of the safety system during vehicular impact. The study has revealed that the partially damaged system preserved some of its original functionality.
PL
Systemy ograniczające drogę stosuje się, aby redukować potencjalnie negatywne skutki zjazdu pojazdów z toru jezdni. Przede wszystkim chodzi o zminimalizowanie występowania obrażeń bądź ich intensywności dla uczestników ruchu, w tym dla kierujących pojazdami, pasażerów oraz pieszych. Jednym z typów wypadków są zderzenia pojazdów z barierami drogowymi pod względnie małym kącie uderzenia. Charakteryzują się tym, że bariera pozostaje w niewielkim stopniu zdeformowana, a kierowca często może kontynuować jazdę i odjeżdża z miejsca zdarzenia. Może zdarzyć się tak, że tego typu uszkodzenia przez długi czas pozostają niezgłoszone do służb utrzymujących drogi. Może to powodować, że taki odcinek bariery drogowej może zostać wtórnie uderzony. W związku z powyższym postanowiono przyjrzeć się temu zjawisku przy pomocy narzędzia w postaci symulacji numerycznych MES. Aktualnie metody numeryczne MES są używane na całym świecie, przez wszystkie czołowe Uniwersytety, firmy z branży motoryzacyjnej oraz bezpieczeństwa ruchu drogowego. Niewątpliwą zaletą jest redukcja kosztów w porównaniu do pełnowymiarowych testów zderzeniowych, przy jednoczesnym zachowaniu wiarygodności wyników. Warunkiem wiarygodności jest kompetentny zespół badaczy lub pracowników, który przeprowadza symulację oraz przyrównanie wyników symulacji do co najmniej jednego rzeczywistego testu zderzeniowego. W tej pracy wybrano właśnie tę drogę, gdzie przygotowany został model numeryczny ok. 73 m stalowej bariery drogowej o prowadnicy typu W. Następnie skorzystano z numerycznego modelu samochodu marki BMW o masie 1500 kg, którym zasymulowano uderzenie w tę barierę z prędkością 110 km/h pod kątem 7°. Wyniki tej symulacji porównano z rzeczywistym testem zderzeniowym przeprowadzonym przez Instytut Badawczy Dróg i Mostów (IBDiM) na poligonie Instytutu Badań Ochronnych Systemów (IBOS) w Inowrocławiu. Walidację symulacji numerycznej przeprowadzono zgodnie z raportem technicznym PD CEN/TR 1603-1:2012. Raport ten dopuszcza pewien subiektywizm podczas walidacji, aby go ograniczyć zdecydowano się dodatkowo porównać rezultat ASI z symulacji i pełnowymiarowego testu przy pomocy wskaźników MPC oraz ANOVA, które służą do zbadania podobieństwa dwóch krzywych. Na podstawie przeprowadzonej walidacji użyte modele uznano za poprawne, przez co można przejść do kolejnego kroku. Po poprawniej walidacji modelu przeprowadzono symulację numeryczną zderzenia TB32 (110 km/h, 20°) w dwóch wariantach: Przypadek 1-szy - zderzenie z barierą nieuszkodzoną, Przypadek 2-gi - zderzenie z barierą wstępnie uszkodzoną pojazdem BMW 1500 kg, który uderzył w nią z prędkością 110 km/h pod kątem 7°. Rezultaty symulacji porównano ze sobą i rezultaty pokazują, że wskaźniki deformacji bariery: szerokość pracująca oraz ugięcie dynamiczne (wg EN 1317), dla obu przypadków wychodzą sobie równe. Jeżeli chodzi o wskaźniki intensywności zderzenia ASI oraz THIV (wg EN 1317) to ASI wychodzi nieznacznie wyższe dla przypadku ze wstępnie uszkodzoną barierą, natomiast dla tego samego przypadku THIV uzyskało wartość niższą. Rezultaty pokazują, że barierę podczas obu przypadków zderzenia można zaklasyfikować do tej samej klasy. Większe różnice przy obu przypadkach można zauważyć dopiero podczas analizy efektywnych plastycznych odkształceń, gdzie dla wstępnie uszkodzonej bariery można zaobserwować większe uplastycznienie w okolicach otworów śrubowych. W pracy przebadano stalową barierę drogową o prowadnicy typu W. Poprawnie przeprowadzono walidację modelu, a następnie dokonano analizy przypadku zderzenia TB32 w barierę nienaruszoną oraz wstępnie uszkodzoną. Z przedstawionych rezultatów wynika, że dla testu TB32 bariera utrzymała swoje cechy funkcjonalne, tj. zachowała swoją klasę szerokości pracującej, ugięcia dynamicznego, oraz intensywności zderzenia. Poza tym poprawnie powstrzymała i wyprowadziła pojazd na swój tor. Należy mieć na uwadze, że jest to wyłącznie analiza konkretnego przypadku i w celu wyciągania bardziej ogólnych wniosków należałoby ją odpowiednio rozszerzyć. Kolejnym kierunkiem do badania mogłoby być sprawdzenie jak uszkodzony system mógłby się zachować przy zderzeniu o większej energii kinetycznej, np. uderzenie pojazdem ciężkim.
EN
Chassis frame of electric vehicle contains several thin-walled tube structures that can provide an important component for installing the power unit and supporting the body in white of vehicle. Thus, design a chassis frame is a multi-objective optimization and multi-parameter problem. To address it, the contributions of design variables to the performance indicators of chassis frame are studied first, and obtained the optimal design variables. The effects of the design parameters on the objective responses are analyzed based on a polynomial response surface model. Moreover, to determine optimal solution between the conflicting performance indicators of the chassis frame, an integrated approach based on lightweight and crashworthiness is presented to analysis the performance and determine the Pareto fronts. In addition, the optimal solution is acquired from the Pareto fronts by the grey relational analysis and game theory. Experiments corresponding to the numerical analysis are performed to verify the feasibility of the optimized strategy and the performance of the optimized chassis frame structure. Results show that according to the optimal parameters of chassis frame, the lightweight performance can be improved significantly, while the linear performance and crashworthiness performance of chassis frame are ensured.
EN
The current paper analyzes the effect of the cross-section on the energy absorption capabilities of sandwich structures under compressive loads. For this purpose, several cross-section including triangular, square, hexagonal and circular shapes were analyzed using Abaqus software. According to the results the hexagonal shape is the most favorable cross-section to increase the crashworthiness performance of the structures up to 700% of CFE with respect to the square arrangement.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.