Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  odlewy stalowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The paper presents the experimental results on the determination of melt parameters such as the energy of the boundary, contact angle, density and kinematic viscosity of low and medium alloy steels at different temperatures, as well as the dispersion of their dendritic structure in solidified castings. The analysis of the data obtained allowed revealing using mathematical models the influence of the chemical composition and temperature of melts on their properties and the dendritic structure of castings. It was established the variation of the melt parameters depending on the particular chemical elements of steels as C, Si, Mn, O, P, V, Cr. The established analytical dependences shown that increasing density and viscosity contributes to the dispersion of the dendritic structure and viscosity is of the major effect. The derived quantitative patterns allows to evaluate structure formation of cast structural low and medium alloy steels.
EN
The article is a case study of the steel milling ring casting of about 6 tonnes net weight. The casting has been cast in the steel foundry the authors have been cooperating with. The aim was to analyse the influence of the shape of the chills and the material which was used to make them on the casting crystallization process. To optimally design the chills the set of the computer simulation has been carried out with 3 chills’ shape versions and 3 material’s versions and the results have been compared with the technology being in use (no chills). The proposed chills were of different thermal conductivity from low to high. Their shapes were obviously dependant on the adjacent casting surface geometry but were the result of the attempt to optimise their effect with the minimum weight, too. The chills working efficiency was analysed jointly with the previously designed top feeders system. The following parameters have been chosen to compare their effectiveness and the crystallization process: time to complete solidification and so-called fed volume describing the casting feeding efficiency. The computer simulations have been carried out with use of MagmaSoft v. 5.2 software. Finally, the optimisation has led to 15% better steel yield thanks to 60% top feeders weight reduction and 40% shorter solidification time. The steel ring cast with use of such technology fulfil all quality criteria.
EN
Analysis of the use of the Russian materials (liquid glass and softening additives) has been made in accordance with the modern requirements for use in the technological processes of casting as binding materials in the production of large-sized steel railway casting. The reasons for poor knockout of liquid glass mixtures have been investigated. A complex action softening additive has been recommended for a better knocking-out ability. This solution provides a softening effect at the points of maximum formation of the liquid glass matrix strength in the processes of polymorphic transformation of the material under the influence of elevated temperatures as the result of filling the mold cavity by the melt. It has been shown that the use of additives of complex action leads to the decrease in the specific work of the knockout by four – seven times depending on the composition of the mixture and the design features of the casting. Experimental-industrial tests of the proposed method for softening the liquid glass mixtures have been made and the "Front Buffer Stop" casting has been made (for the rolling stock of locomotives and railway wagons). The tests confirmed the effectiveness and expediency of implementation of new liquid glass mixtures with softening additives in conditions of foundry enterprises.
EN
Industrial conditions of obtaining thick-walled and shaped castings intended for operations at temperatures: minus 40÷60°C are presented in the paper. The selection of a cast steel grade is based on known studies [1,10,14], however due to castings wall thickness (70-240mm), the way of preparing liquid metal (deep deoxidation and modification, argon stirring in a ladle) and conditions of filling mould cavities (gating system assuring quiet filling, directional solidification and avoiding a formation of inessential heat centres), were developed to assure the required impact strength. Maintaining these parameters as well as the selection of heat treatments for the produced massive castings allowed to achieve the impact strength over 50 J/cm2 at minus 40°. This value was obtained for walls of various thickness.
PL
Przedstawiono przemysłowe warunki otrzymywania grubościennych i kształtowych odlewów, przeznaczonych do pracy w temperaturze minus 40÷60°. Dobór gatunku staliwa oparto o znane prace [1,10,14], jednak ze względu na grubość ścianek odlewów (70-240 mm), opracowano sposób przygotowania ciekłego metalu (głębokie odtlenianie i modyfikacja, argonowanie w kadzi) oraz warunki zapełnienia wnęki formy (układ wlewowy zapewniający spokojne wypełnianie, kierunkowe krzepnięcie i unikanie tworzenia zbędnych węzłów cieplnych), dla zapewnienia wymaganej udarności. Zachowanie tych parametrów jak również dobór obróbki cieplnej dla produkowanych masywnych odlewów, pozwoliły na uzyskanie udarności w minus 40° wynoszącej powyżej 50 J/cm2. Wartość tą otrzymano dla ścianek o różnej grubości.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.