Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  odległość Hausdorffa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Automated retinal vessel segmentation plays an important role in computer-aided diagnosis of serious diseases such as glaucoma and diabetic retinopathy. This paper contributes, (1) new Binary Hausdorff Symmetry (BHS) measure based automatic seed selection, and (2) new edge distance seeded region growing (EDSRG) algorithm for retinal vessel segmentation. The proposed BHS measure directly provides a binary symmetry decision at each pixel without the computation of continuous symmetry map and image thresholding. In a multiscale mask, the BHS measure is computed using the distance sets of opposite direction angle bins with sub-pixel resolution. The computation of the BHS measure from the Hausdorff distance sets involves point set matching based geometrical interpretation of symmetry. Then, we design a new edge distance seeded region growing (EDSRG) algorithm with the acquired seeds. The performance evaluation in terms of sensitivity, specificity and accuracy is done on the publicly available DRIVE, STARE and HRF databases. The proposed method is found to achieve state-of-the-art vessel segmentation accuracy in three retinal databases; DRIVE- sensitivity (0.7337), specificity (0.9752), accuracy (0.9539); STARE-sensitivity (0.8403), specificity (0.9547), accuracy (0.9424); and HRF-sensitivity (0.8159), specificity (0.9525), accuracy (0.9420).
EN
This is the first of two papers describing the process of fitting experimental data under interval uncertainty. Probably the most often encountered application of global optimization methods is finding the so called best fitted values of various parameters, as well as their uncertainties, based on experimental data. Here I present the methodology, designed from the very beginning as an interval-oriented tool, meant to replace to the large extent the famous Least Squares (LSQ) and other slightly less popular methods. Contrary to its classical counterparts, the presented method does not require any poorly justified prior assumptions, like smallness of experimental uncertainties or their normal (Gaussian) distribution. Using interval approach, we are able to fit rigorously and reliably not only the simple functional dependencies, with no extra effort when both variables are uncertain, but also the cases when the constitutive equation exists in implicit rather than explicit functional form. The magic word and a key to success of interval approach appears the Hausdorff distance.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.