Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ochrona przeciwzwarciowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Praca niniejsza obejmuje zagadnienia dotyczące: - wytrzymałości zwarciowej przyrządów energoelektronicznych; - wytrzymałości eksplozyjnej obudów tych przyrządów; - doboru przyrządów półprzewodnikowych do warunków zwarciowych występujących w przekształtnikach energoelektronicznych dużej mocy. W rozdziale drugim omówiono zagadnienia związane z wyznaczaniem ustalonej rezystancji cieplnej i przejściowej impedancji cieplnej przyrządów energoelektronicznych w sposób obliczeniowy i eksperymentalny. Przedstawiono przykład określania tych parametrów dla konkretnego przyrządu energoelektronicznego. W oparciu o opracowany program komputerowy przeprowadzono obliczenia temperatury struktury krzemowej przyrządu energoelektronicznego przy obciążeniu impulsami prądowymi o róż-nym czasie trwania i zmiennej amplitudzie. Wyniki obliczeń zweryfikowane zostały eksperymentalnie. W rozdziale trzecim przeprowadzono obliczenia prądu zwarcia symetrycznego w układzie trójfazowym mostkowym. Obliczenia wykazały, iż impulsy prądu zwarcia w gałęzi mostka z przyrządem półprzewodnikowym mogą zmieniać wartości szczytowe i czas trwania w czasie jednego cyklu zwarciowego. Stwarza to trudności przy doborze diod i tyrystorów do tych warunków gdyż odpowiednie dane deklarowane przez wytwórców dotyczą półsinusoidalnych impulsów prądowych o stałej wartości szczytowej i czasie trwania 10 milisekund. W rozdziale czwartym omówiono mechanizmy uszkodzeń diod i tyrystorów powodowane nadmiernym prądem zwarcia. Przedstawiono wyniki badań eksperymentalnych, które wykazały, że występują różne mechanizmy uszkodzeń tych przyrządów charakterystyczne dla warunków przed wystąpieniem zwarcia określonych napięciem wstecznym i temperaturą. Wprowadzono do obliczeń zwarciowych przekształtników temperaturę struktury krzemowej jako kryterium doboru diod i tyrystorów do tych warunków występujących w przekształtnikach. Zaproponowano eksperymentalny sposób wyznaczania deklarowanej przeciążalności prądowej (metoda prób niszczących) jako najbardziej wiarygodny. Uwzględnia on bowiem czynniki technologiczne, materiałowe i wykonawcze trudne do ujęcia w metodach obliczeniowych. Rozdział piąty obejmuje wyniki badań eksperymentalnych wytrzymałości eksplozyjnej diod i tyrystorów o obudowie tradycyjnej (pastylkowej i wkręcanej) oraz tranzystorów o obudowie modułowej z tworzywa sztucznego. Badania wykazały, że eksplozja obudowy wywołana nadmiernym prądem zwarcia występuje przy kilkakrotnie mniejszym prądzie w przyrządzie o obudowie modułowej niż w odpowiednim przyrządzie o obudowie tradycyjnej. Podane zostały wyznaczone doświadczalnie wartości prądu, energii i całki i2t powodujące eksplozję obudowy. Oceniono iż najbardziej miarodajnym czynnikiem określającym wytrzymałość eksplozyjną przyrządów energoelektronicznych jest energia wydzielana w przyrządzie w wyniku prądu zwarcia. Ponieważ energia ta nie daje się obliczyć na podstawie parametrów obwodu zwarcia w danym przekształtniku, do oceny zagrożeń eksplozyjnych przyrządów w układach energoelektronicznych wykorzystana została całka i2t. Przeprowadzone zostały obliczenia tej wartości dla przypadków zwarć w prostowniku dużej mocy i falowniku napięcia. W rozdziale szóstym, na podstawie opracowanych w poprzednich rozdziałach sposobów obliczeń, dokonano weryfikacji doboru diod prostownika dużej mocy, do warunków zwarciowych. Prostownik ten opracowany i wykonany w Instytucie Elektrotechniki wprowadzony został do eksploatacji na podstacji zasilającej sieć trakcyjną linii szybkiego ruchu.
EN
The present paper is related to problems concerning - Short-circuit strength; - Explosion strength of cases; - Matching of semiconductor devices to short-circuit conditions occurring power electronic converters of high power. The second chapter discusses problems related to determining the steady state thermal resistance and transient thermal impedance of power electronic devices, by computational and experimental methods. An example of determining these parameters for a real power electronic device is presented. Basing on the worked out computer program, temperature calculations are carried through for the silicone structure of power electronic devices loaded by current impulses of varying duration time and amplitude. The calculation results have been experimentally verified. In the third chapters calculations of currents in a 3-phase bridge system are carried out for a symmetrical short-circuit. The calculations have shown that short-circuit current pulses in the bridge arm containing a power electronic device can change their peak values and time duration during one short-circuit cycle. This creates difficulties when diods and thyristors are being selected for those conditions because the corresponding data declared by manufacturers concern half sinusoidal current pulses of constant peak value and a duration time often milliseconds. The fourth chapter discusses the defect mechanisms of diods and thyristors caused by excessive short-circuit currents. Results of experimental work are shown, which indicate to the fact that there are different causes of defects of those devices, being characteristic for the conditions prevailing before short-circuit occurrence, determined by inverse voltage and temperature. The silicon structure temperature has been introduced into short-circuit calculations of converters as a criterion of selecting diods and thyristors to conditions occurring in converters. An experimental current overload capacity (destructive testing method) is suggested as being the most reliable one, because it accounts for technological, material and production factors which are difficult to be accounted for by computational methods. The fifth chapter presents results of experimental tests of explosion strength of diods and thyristors in traditional cases (pellets and the screwed in ones as well as of transistors in module type cases made of plastics. Investigations showed that cases explosions, caused by excessive short-circuit current flow, occur in devices in module type cases at current values being several times lower than in corresponding devices in traditional cases. Experimentally determined values of current, energy and the i2t integral causing the cases to explode are given. It has been established that the most reliable factor determining the explosion strength of power electronic devices is the energy emitted in the device as a result of short-circuit current As this energy can not be calculated basing on parameters of the short-circuit in a given converter, the integral i2t is used to estimate the cases explosion hazards in power electronic systems. This value is calculated for short-circuit cases in a high power rectifier and a voltage inverter. Basing on the computational methods worked out according to the foregoing chapters, a verification is carried out in the sixth chapter, of the selection of diodes for a high power rectifier with the short circuit condition taken into account. This rectifier was developed and carried out at of the Electrotechnical Institute and it was introduced into operation at a substation supplying with power the traction network of a rapid traffic line.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.