Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ocean colour
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aerosol products associated with the ocean colour missions SeaWiFS and MODIS (both Aqua and Terra) are assessed with AERONET field measurements collected in four European marginal seas for which fairly large uncertainties in ocean colour in-water products have been documented: the northern Adriatic, the Baltic, Black and North Seas. On average, more than 500 match-ups are found for each basin and satellite mission, showing an overall consistency of validation statistics across the three missions. The median absolute relative difference between satellite and field values of aerosol optical thickness ?a at 443 nm varies from 12% to 15% for the three missions at the northern Adriatic and Black Sea sites, and from 13% to 26% for the Baltic and North Sea sites. It is in the interval 16-31% for the near-infrared band. The spectral shape of ?ais well reproduced with a median bias of the Ängström exponent varying between -15% and +14%, which represents a clear improvement with respect to previous versions of the atmospheric correction scheme. These results show that the uncertainty associated with ?a in the considered coastal waters of the European marginal seas is comparable to global validation statistics.
EN
The quasi-synoptic view available from satellites has been broadly used in recent years to observe in near-real time the large-scale dynamics of marine ecosystems and to estimate primary productivity in the world ocean. However, the standard global NASA ocean colour algorithms generally do not produce good results in the Baltic Sea. In this paper, we compare the ability of seven algorithms to estimate depth-integrated daily primary production (PP, mg C m-2) in the Baltic Sea. All the algorithms use surface chlorophyll concentration, sea surface temperature, photosynthetic available radiation, latitude, longitude and day of the year as input data. Algorithm-derived PP is then compared with PP estimates obtained from 14C uptake measurements. The results indicate that the best agreement between the modelled and measured PP in the Baltic Sea is obtained with the DESAMBEM algorithm. This result supports the notion that a regional approach should be used in the interpretation of ocean colour satellite data in the Baltic Sea.
EN
An extensive bio-optical data set obtained from field measurements was used to evaluate the performance of an empirical (Kowalczuk et al. 2005) and two semi-analytical algorithms: Carder et al. (1999) and GSM01 (Maritorena et al. 2002) for estimating CDOM absorption in the Baltic Sea. The data set includes coincident measurements of radiometric quantities and absorption coefficients of CDOM made during 43 cruises between 2000 and 2008. In the first stage of the analysis, the accuracy of the empirical algorithm by Kowalczuk et al. (2005) was assessed using in situ measurements of remote sensing reflectance. Validation results improved when matching points located in Gulf of Gdańsk close to the Vistula River mouth were eliminated from the data set. The calculated errors in the estimation of aCDOM(400) in the first phase of the analysis were Bias = -0.02, RMSE = 0.46 and R2 = 0.70. In the second stage, the empirical algorithm was tested on satellite data from SeaWiFS and MODIS imagery. The satellite data were corrected atmospherically with the MUMM algorithm designed for turbid coastal and inland waters and implemented in the SeaDAS software. The results of the best case scenario for estimating the CDOM absorption coefficient aCDOM(400), based on SeaWiFS data, were Bias = -0.02, RMSE = 0.23 and R2 = 0.40. The validation of the Kowalczuk et al. (2005) empirical algorithm applied to MODIS data led to a less accurate estimate of aCDOM(400): Bias = -0.03, RMSE = 0.19 and R2 = 0.29. This assessment of the accuracy of standard semi-analytical algorithms available in the SeaWiFS and MODIS imagery processing software revealed that both algorithms (GSM_01 and Carder) underestimate CDOM absorption in the Baltic Sea with mean systematic and random errors in excess of 70%. The paper presents examples of the application of the Kowalczuk et al. (2005) empirical algorithm for producing maps of the seasonal distribution of aCDOM(400) in the Baltic Sea between 2004 and 2008.
EN
This paper is the second of two articles on the methodology of the remote sensing of the Baltic ecosystem. In Part 1 the authors presented the set of DESAMBEM algorithms for determining the major parameters of this ecosystem on the basis of satellite data (see Woźniak et al. 2008 - this issue). That article discussed in detail the mathematical apparatus of the algorithms. Part 2 presents the effects of the practical application of the algorithms and their validation, the latter based on satellite maps of selected Baltic ecosystem parameters: the distributions of the sea surface temperature (SST), the Photosynthetically Available Radiation (PAR) at the sea surface, the surface concentrations of chlorophyll a and the total primary production of organic matter. Particular emphasis was laid on analysing the precision of estimates of these and other parameters of the Baltic ecosystem, determined by remote sensing methods. The errors in these estimates turned out to be relatively small; hence, the set of DESAMBEM algorithms should in the future be utilised as the foundation for the effective satellite monitoring of the state and functioning of the Baltic ecosystem.
EN
The accuracy analysis of an approximate atmospheric correction algorithm for the processing of SeaWiFS data has been investigated for the Baltic Sea. The analysis made use of theoretical radiances produced with the FEM radiative transfer code for representative atmosphere-water test cases. The study showed uncertainties in the determination of the aerosol optical thickness at 865 nm and of the A*ngström exponent lower than š 5% and š 10%, respectively. These results were confirmed by the analysis of 59 match-ups between satellite-derived and in situ measurements for a site located in the central Baltic. Because of the relatively high yellow substance absorption, often combined with the slanted solar illumination, the retrieval of the water-leaving radiance in the blue part of the spectrum appeared to be highly degraded, to the extent that almost no correlation was found between retrieved and simulated values. Better results were obtained at the other wavelengths. The accuracy in the estimation of the remote sensing reflectance ratio R35 decreased with diminishing chlorophyll a concentration and increasing yellow substance absorption, ranging between š 7% and š 47%. The propagation of R35 uncertainties on chlorophyll a estimation was quantified. Keeping the same atmosphere-water conditions, the atmospheric correction scheme appeared sensitive to seasonal changes in the Sun zenith.
6
Content available remote Two models for absorption by coloured dissolved organic matter (CDOM)
EN
The standard exponential model for CDOM absorption has been applied to data from diverse waters. Absorption at 440 nm (ag440) ranged between close to zero and 10 m-1, and the slope of the semilogarithmic absorption spectrum over a minimum range of 400 to 440 nm (s440) ranged between < 0.01 and 0.04 nm-1. No relationship was found between ag440 or s440 and salinity. Except in the southern Baltic, s440 was found to have a broad distribution (0.0165 š 0.0035), suggesting that it should be introduced as an additional variable in bio-optical models when ag440 is large. An alternative model for CDOM absorption was applied to available high quality UV-visible absorption spectra from the Wisla river (Poland). This model assumes that the CDOM absorption spectrum comprises distinct Gaussian absorption bands in the UV, similar to those of benzene. Five bands were fit to the data. The mean central energy of all bands was higher in early summer (E~7.2, 6.6, 6.4, 6.2 and 5.5 eV or 172, 188, 194, 200 and 226 nm) than in winter. The higher energy bands were found to decay in both height and width with increasing salinity, while lower energy bands broadened with increasing salinity. s440 was found to be correlated with shape parameters of the bands centred at 6.4 and 5.5 eV. While the exponential model is convenient for optical modelling and remote sensing applications, these results suggest that the Gaussian model offers a deeper understanding of chemical interactions affecting CDOM molecular structure.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.