Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ocean color
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Nordic and Barents Seas are of special interest for research on climate change, since they are located on the main pathway of the heat transported from low to high latitudes. The Barents Sea is characterized by supreme phytoplankton blooms and large amount of carbon is sequestered here due to biological processes. It is important to monitor the biological variability in this region in order to derive in depth understanding whether the size of carbon reservoirs and fluxes may vary as a result of climate change. In this paper we analyze the 17 years (1998–2014) of particulate organic carbon (POC) concentration derived from remotely sensed ocean color. POC concentrations in the Barents Sea are among the highest observed in the global ocean with monthly mean concentrations in May exceeding 300 mg m−3. The seasonal amplitude of POC concentration in this region is larger when compared to other regions in the global ocean. Our results indicate that the seasonal increase in POC concentration is observed earlier in the year and higher concentrations are reached in the southeastern part of the Barents Sea in comparison to the southwestern part. Satellite data indicate that POC concentrations in the southern part of the Barents Sea tend to decrease in recent years, but longer time series of data are needed to confirm this observation.
EN
Ocean color satellite missions have provided more than 16-years of consistent, synoptic observations of global ocean ecosystems. Surface chlorophyll concentrations (Chl) derived from satellites have been traditionally used as a metric for phytoplankton biomass. In recent years interpretation of ocean-color satellite data has progressed beyond the estimation of Chl. One of the newer ocean color products is particulate organic carbon (POC) concentration. In this paper we carry out comparisons of simultaneous satellite and in situ POC determinations. Our results indicate that the performance of the standard NASA POC algorithm (Stramski et al., 2008) is comparable to the standard empirical band ratio algorithms for Chl.
EN
Ecosystem models, used mainly in studying the interactions between different trophic levels, can also be used for ocean circulation model skill assessment, with the help of satellite ocean color data. This paper presents how the use of a simple NPZ primary productivity ecosystem model, coupled to a hydrodynamical model, can help assessing the skill of the physical ocean model in depicting realistically the prevailing mesoscale features of the upper layers of the Gulf of Mexico. Results indicate that the physical model effectively reproduces the mesoscale features of circulation underlying the resulting chlorophyll concentrations, especially when circulation fronts exist.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.