Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  obrazowanie siatkówki
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Spatio-Temporal Optical Coherence Tomography (STOC-T) is a novel imaging technique using light with controlled spatial and temporal coherence. Retinal images obtained using the STOC-T system maintain high resolution in all three dimensions, on a sample of about 700 μm, without the need for mechanical scanning. In the present work, we use known data processing algorithms for optical coherence tomography angiography (OCTA) and modify them to improve the rendering of the vasculature in the human retina at different depths by introducing the angio STOC-T method. The algorithms are primarily sensitive to the strong signal phase variance corresponding to the appearance of a wide Doppler band in STOC-T signals obtained for millisecond exposure times. After using STOC-T angiography, we can render high contrast images of the choroid.
EN
The change in vascular geometry is an indicator of various health issues linked with vision and cardiovascular risk factors. Early detection and diagnosis of these changes can help patients to select an appropriate treatment option when the disease is in its primary phase. Automatic segmentation and quantification of these vessels would decrease the cost and eliminate inconsistency related to manual grading. However, automatic detection of the vessels is challenging in the presence of retinal pathologies and non-uniform illumination, two common occurrences in clinical settings. This paper presents a novel framework to address the issue of retinal blood vessel detection and width measurement under these challenging circumstances and also on two different imaging modalities: color fundus imaging and Scanning Laser Ophthalmoscopy (SLO). In this framework, initially, vessel enhancement is done using linear recursive filtering. Then, a unique combination of morphological operations, background estimation, and iterative thresholding are applied to segment the blood vessels. Further, vessel diameter is estimated in two steps: firstly, vessel centerlines are extracted using the graph-based algorithm. Then, vessel edges are localized from the image profiles, by utilizing spline fitting to obtain vascular orientations and then finding the zero-crossings. Extensive experiments have been carried out on several publicly accessible datasets for vessel segmentation and diameter measurement, i.e., DRIVE, STARE, IOSTAR, RC-SLO and REVIEW dataset. Results demonstrate the competitive and comparable performance than earlier methods. The encouraging quantitative and visual performance of the proposed framework makes it an important component of a decision support system for retinal images.
3
Content available remote A hybrid method for blood vessel segmentation in images
EN
In the last years, image processing has been an important tool for health care. The analysis of retinal vessel images has become crucial to achieving a better diagnosis and treatment for several cardiovascular and ophthalmological deceases. Therefore, an automatic and accurate procedure for retinal vessel and optic disc segmentation is essential for illness detection. This task is extremely hard and time-consuming, often requiring the assistance of human experts with a high degree of professional skills. Several retinal vessel segmentation methods have been developed with satisfactory results. Nevertheless, most of such techniques present a poor performance mainly due to the complex structure of vessels in retinal images. In this paper, an accurate methodology for retinal vessel and optic disc segmentation is presented. The proposed scheme combines two different techniques: the Lateral Inhibition (LI) and the Differential Evolution (DE). The LI scheme produces a new image with enhanced contrast between the background and retinal vessels. Then, the DE algorithm is used to obtain the appropriate threshold values through the minimization of the cross-entropy function from the enhanced image. To evaluate the performance of the proposed approach, several experiments over images extracted from STARE, DRIVE, and DRISHTI-GS databases have been conducted. Simulation results demonstrate a high performance of the proposed scheme in comparison with similar methods reported in the literature.
4
Content available remote Fast, accurate and robust retinal vessel segmentation system
EN
The accurate segmentation of the retinal vessel tree has become the prerequisite step for automatic ophthalmological and cardiovascular diagnosis systems. Aside from accuracy, robustness and processing speed are also considered crucial for medical purposes. In order to meet those requirements, this work presents a novel approach to extract blood vessels from the retinal fundus, by using morphology-based global thresholding to draw the retinal venule structure and centerline detection method for capillaries. The proposed system is tested on DRIVE and STARE databases and has an average accuracy of 95.88% for single-database test and 95.27% for the cross-database test. Meanwhile, the system is designed to minimize the computing complexity and processes multiple independent procedures in parallel, thus having an execution time of 1.677 s per image on CPU platform.
EN
Retinal images play an important role in the early diagnosis of diseases such as diabetes. In the present study, an automatic image processing technique is proposed to segment retinal blood vessels in fundus images. The technique includes the design of a bank of 180 Gabor filters with varying scale and elongation parameters. Furthermore, an optimization method, namely, the imperialism competitive algorithm (ICA), is adopted for automatic parameter selection of the Gabor filter. In addition, a systematic method is proposed to determine the threshold value for reliable performance. Finally, the performance of the proposed approach is analyzed and compared with that of other approaches on the basis of the publicly available DRIVE database. The proposed method achieves an area under the receiver operating characteristic curve of 0.953 and an average accuracy of up to 0.9392. Thus, the results show that the proposed method is well comparable with alternative methods in the literature.
EN
Retinal vascular pattern has many valuable characteristics such as uniqueness, stability and permanence as a basis for human authentication in security applications. This paper presents an automatic rotation-invariant retinal authentication framework based on a novel graph-based retinal representation scheme. In the proposed framework, to replace the retinal image with a relational mathematical graph (RMG), we propose a novel RMG definition algorithm from the corresponding blood vessel pattern of the retinal image. Then, the unique features of RMG are extracted to supplement the authentication process in our framework. The authentication process is carried out in a two-stage matching structure. In the first stage of this scenario, the defined RMG of enquiry image is authenticated with enrolled RMGs in the database based on isomorphism theory. If the defined RMG of enquiry image is not isomorphic with none enrolled RMG in the database, in the second stage of our matching structure, the authentication is performed based on the extracted features from the defined RMG by a similarity-based matching scheme. The proposed graph-based authentication framework is evaluated on VARIA database and accuracy rate of 97.14% with false accept ratio of zero and false reject ratio of 2.85% are obtained. The experimental results show that the proposed authentication framework provides the rotation invariant, multi resolution and optimized features with low computational complexity for the retina-based authentication application.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.