Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  number of turns
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Bending losses in optical fibers comprise one of the extrinsic attenuations that contribute to optical loss and they are essential for optical fiber bending sensor applications. This work investigated the optical loss in a standard single-mode step-index fiber optics due to fiber bending at 1550 nm wavelength. Variations in macro-bending loss with curvature radius and turn number have been measured. Curvature radius and turn number are examined for sinusoidal and elliptical shaped bending configurations. It has been found that the loss increases as the bending radius and number of turns increase. The result also showed that elliptical shaped bending configuration produced more loss in contrast to that of sinusoidal shaped at bending angles of 180° and 360°. The study on the macro-bending loss in terms of curvature radius and turn number for both elliptical and sinusoidal shaped bending configurations is beneficial for future fiber optic sensor applications.
EN
The current passed by the stator coil of the permanent magnet synchronous motor (PMSM) provides rotating magnetic field, and the number of turns will directly affect the performance of PMSM. In order to analyze its influence on the PMSM performance, a 3 kW, 1500 r/min PMSM is taken as an example, and the 2D transient electromagnetic field model is established. The correctness of the model is verified by comparing the experimental data and calculated data. Firstly, the finite element method (FEM) is used to calculate the electromagnetic field of the PMSM. The performance parameters of the PMSM are obtained. On this basis, the influence of the number of turns on PMSM performance is quantitatively analyzed, including current, no-load back electromotive force (EMF), overload capacity and torque. In addition, the influence of the number of turns on eddy current loss is further studied, and its variation rule is obtained, and the variation mechanism of eddy current loss is revealed. Finally, the temperature field of the PMSM is analyzed by the coupling method of electromagnetic field and temperature field, and the temperature rise law of PMSM is obtained. The analysis of this paper provides reference and practical value for the optimization design of PMSM.
EN
The presence of an open-circuit fault subjects a three-phase induction motor to severely unbalanced voltages that may damage the stator windings consecutively causing total shutdown of systems. Unplanned downtime is very costly. Therefore, fault diagnosis is essential for making a predictive plan for maintenance and saving the required time and cost. This paper presents a model-based diagnosis technique for diagnosing an open-circuit fault in any phase of a three-phase induction motor. The proposed strategy requires only current signals from the faulty machine to compare them with the healthy currents from an induction motor model. Then the errors of comparison are used as an objective function for a genetic algorithm that estimates the parameters of a healthy model, which they employed to identify and localize the fault. The simulation results illustrate the behaviours of basic parameters (stator and rotor resistances, self-inductances, and mutual inductance) and the number of stator winding turn parameters with respect to the location of an open-circuit fault. The results confirm that the number of stator winding turns are the useful parameters and can be utilized as an identifier for an open-circuit fault. The originality of this work is in extracting fault diagnosis features from the variations of the number of stator winding turns.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.