Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nuclear fusion
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Badania termojądrowe w Polsce: część 2
PL
Artykuł przedstawia przegląd badań w dziedzinie fuzji jądrowej, prowadzonych przez polskie jednostki naukowe. W szczególności opisane są zadania realizowane przez Instytut Fizyki Plazmy i Laserowej Mikrosyntezy, będący koordynatorem badań i reprezentantem Polski w konsorcjum EUROfusion. Prace dotyczą zarówno prac doświadczalnych i udziału polskich naukowców w eksperymentach na układach typu tokamak czy stellarator, jak i modelowania zjawisk zachodzących w plazmie. Ponadto przedstawiono zaangażowanie w programie EUROfusion jednostek naukowych tworzących Centrum naukowo-przemysłowe Nowe Technologie Energetyczne (CeNTE). Zadania te dotyczą głównie fuzji z magnetycznym utrzymaniem, ale dotyczą także wsparcia naukowców od strony informatycznej, jak również badań socjo-ekonomicznych.
EN
The article presents an overview of research performed by Polish research units in the field of nuclear fusion. In particular, the tasks carried out by the Institute of Plasma Physics and Laser Microfusion, as the coordinator and Polish representative in the EUROfusion consortium, are described both in the part related to the magnetic and laser plasma confinement. The work covers experimental research and the participation of Polish scientists in experiments on tokamak or stellarator systems as well as modelling of plasma phenomena. Moreover, the involvement of the members of the Centre New Energy Technologies performing the EUROfusion tasks was presented. These tasks are mainly related to the magnetic fusion part but also are to support scientists from the IT side as well as socio-economic studies.
2
Content available Badania termojądrowe w Polsce. Część 1
PL
Przedstawiona została panorama badań termojądrowych w Polsce, na tle badań we Wspólnocie EURATOM i na całym świecie. We wstępie przedstawiono genezę tych badań i ich początki. Przedstawiona została rola Instytutu Fizyki Plazmy i Laserowej Mikrosyntezy w Warszawie jako organizatora i koordynatora tych badań oraz reprezentanta Polski w europejskim konsorcjum EUROfusion. Na gruncie krajowym realizatorem programu jest Centrum naukowo-przemysłowe Nowe Technologie Energetyczne (CeNTE), skupiające 16 podmiotów: instytutów badawczych, instytutów PAN, uczelni oraz Wrocławski Park Technologiczny. W drugiej części artykułu zostaną przedstawione dokonania CeNTE będące wkładem Polski do europejskiego i światowego programu opanowania fuzji jądrowej na potrzeby energetyki termojądrowej – jako nowego, wydajnego, bezpiecznego dla społeczeństwa i przyjaznego dla środowiska źródła energii elektrycznej.
EN
The authors presented an overview of thermonuclear research in Poland in comparison with the research performed in the EURATOM Community and all over the world. The introduction depicts the origin of these studies and their beginnings. The role of the Institute of Plasma Physics and Laser Microfusion in Warsaw was presented as the organizer and coordinator of this research and the Polish representative in the European consortium EUROfusion. On the national level, the scientific and industrial Centre New Energy Technologies (CeNET) implements the program through bringing together 16 entities, namely research institutes, institutes of the Polish Academy of Sciences, universities and the Wrocław Technology Park. The second part of the article will be devoted to the achievements of CeNET as Poland's contribution to the European and global program to contain nuclear fusion for the purposes of thermonuclear energy as a new and efficient source of electricity that is safe for society and environmentally friendly.
EN
The influence of extreme heat loads, as produced by a multiple pulses of non-homogeneous flow of slow plasma (0.1–1 keV) and fast ions (100 keV), on double-forged tungsten (DFW) was investigated. For generation of deuterium plasma and fast deuterons, plasma-focus devices PF-12 and PF-1000 are used. Depending on devices and conditions, the power flux density of plasma varied in a range of 107–1010 W/cm2 with pulse duration of 50–100 ns. Power flux density of fast ions was 1010–1012 W/cm2 at the pulse duration of 10–50 ns. To achieve the combined effect of different kind of plasmas, the samples were later irradiated with hydrogen plasma (105 W/cm2, 0.25 ms) by a QSPA Kh-50 plasma generator. Surface modification was analysed by scanning electron microscopy (SEM) and microroughness measurements. For estimation of damages in the bulk of material, an electrical conductivity method was used. Investigations showed that irradiation of DFW with multiple plasma pulses generated a mesh of micro- and macrocracks due to high heat load. A comparison with single forged tungsten (W) and tungsten doped with 1% lanthanum-oxide (WL10) reveals the better crack-resistance of DFW. Also, sizes of cells formed between the cracks on the DFW’s surface were larger than in cases of W or WL10. Measurements of electrical conductivity indicated a layer of decreased conductivity, which reached up to 500 µm. It depended mainly on values of power flux density of fast ions, but not on the number of pulses. Thus, it may be concluded that bulk defects (weakening bonds between grains and crystals, dislocations, point-defects) were generated due to mechanical shock wave, which was generated by the fast ions flux. Damages and erosion of materials under different combined radiation conditions have also been discussed.
EN
An overview of the energy problem in the world is presented. The colossal task of ‘decarbonizing’ the current energy system, with ~85% of the primary energy produced from fossil sources is discussed. There are at the moment only two options that can contribute to a solution: renewable energy (sun, wind, hydro, etc.) or nuclear fission. Their contributions, ~2% for sun and wind, ~6% for hydro and ~5% for fission, will need to be enormously increased in a relatively short time, to meet the targets set by policy makers. The possible role and large potential for fusion to contribute to a solution in the future as a safe, nearly inexhaustible and environmentally compatible energy source is discussed. The principles of magnetic and inertial confinement are outlined, and the two main options for magnetic confi nement, tokamak and stellarator, are explained. The status of magnetic fusion is summarized and the next steps in fusion research, ITER and DEMO, briefly presented.
5
Content available remote Synteza termojądrowa : przyszłość energetyki
PL
W artykule przedstawiono rolę, jaką może odegrać w produkcji energii synteza termojądrowa. Opisano zjawisko syntezy termojądrowej oraz pokazano w jaki sposób można ją przeprowadzić w warunkach ziemskich na urządzeniu tokamak. Omówiono stan i perspektywy rozwoju reaktorów termojądrowych opartych na układach typu tokamak. W podsumowaniu wymieniono najważniejsze wady i zalety tego sposobu produkcji energii.
EN
The future of thermonuclear fusion in global energy production is presented in the paper. The phenomena of fusion is described and it is shown how the fusion can be conducted on tokamak devices. The state and prospects of development of the fusion reactor based on the tokamak-type systems are presented. In summary, major advantages and disadvantages of this method of energy production has been discussed.
6
Content available Fusion 2050 : European and Polish Perspective
EN
Fusion, in all its varieties, is a very current subject of science and technology. The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly an aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050. The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion and plasma communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, etc. Construction of such research and industrial accelerator and tokomak infrastructure may have potentially a profound meaning for the development of science and technology in Poland.
PL
W wyniku egzotermicznej reakcji fuzji termojądrowej jądra deuteru i trytu łączą się i powstaje jądro helu, neutron i wydzielana jest znaczna energia (kinetyczna neutronów 14 MeV). Reakcja nuklidów DT nie jest najkorzystniejsza z punktu widzenia produkcji energii, ale jest najbardziej zaawansowana techniczne. Korzystniejsze byłyby prawdopodobnie reakcje aneutronowe, Unia Europejska, poprzez swoją agendę EURATOM, opracowała mapę drogową mającą prowadzić do opanowania i wprowadzenia komercyjnej energetyki termojądrowej w perspektywie 2050. Kamieniami milowymi na tej drodze są eksperymenty tokamakowe JET, ITER oraz DEMO i eksperyment neutronowy IFMIF. Jest nadzieja, że przy zaangażowaniu rządu oraz wszystkich środowisk krajowych uczonych z dziedziny fuzji, część z tej mapy drogowej mogła by być realizowana w naszym kraju. Infrastruktura budowana dla eksperymentów fuzyjnych może być wykorzystywana także do badań materiałowych, chemicznych, biomedycznych, związanych z ochroną środowiska, energetyką, bezpieczeństwem, itp. Budowa takiej akceleratorowej infrastruktury badawczej i przemysłowej miałaby wielkie znaczenie dla rozwoju nauki i przemysłu atomistycznego w Polsce.
EN
The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050. The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, etc. Construction of such research and industrial accelerator infrastructure may have potentially a profound meaning for the development of science and technology in Poland.
9
Content available remote Synteza jądrowa - perspektywy wykorzystania w energetyce przyszłości
PL
Opisano warunki przeprowadzenia syntezy jądrowej i jej kolejne generacje. Obecne osiągnięcia w opanowywaniu syntezy termojądrowej pozwalają na stworzenie koncepcji tzw. europejskiej przestrzeni naukowej (European Research Area).
EN
Described are conditions needed for carrying out nuclear fusion process and its next generations. Present achievements in developing of nuclear fusion know-how allow creation of a new idea of the so-called European Research Area.
EN
Neutrons from a plasma focus (PF) device operated in a deuterium gas, measured as a function of time, location and direction of emission, reveal quite a number of important parameters on fusion reactions occurring in the dense high-current phase of the experiment. In addition the determination of the energy spectra of the emitted neutrons is important for understanding the mechanisms taking place for the neutron production. Results of neutron measurements in large experiments such as the former POSEIDON experiment in Stuttgart and the PF-1000 experiment in Warsaw are presented. The neutron diagnostic methods that had been utilized include nuclear track detectors, plastic scintillators coupled to photomultipliers, activation measurements, time-of-flight methods as well as pinholes for spatial resolution of the neutron source. The well known scaling law according to which the neutron yield scales roughly as the square of the energy input or the fourth power of the current is discussed. Reasons for strong deviation from this law for high energies - known as the saturation effect - are still a subject of debate.
11
Content available Quo vadis fusion ?
EN
A brief history of the discovery of nuclear fusion, first as the motor of the stars and subsequently its first realization as H-bombs, is described. The efforts of trying to make it into a source of energy for mankind as a controlled nuclear fusion (CNF) are sketched out. We shall mention the main research approaches, so far explored, i.e. the magnetic confinement fusion (MCF), the inertial confinement fusion (ICF) and the beam-target fusion (BTF) and point out the main difficulties connected with these three ways to CNF. The present trend to concentrate the main research potential on just two embodiments of MCF and ICF, i.e. the Tokomak and the laser driven spherical pellet, is criticized arguing that other promising approaches may be left unexplored. Such approaches, some in which the use of advanced, a-neutronic fuels is envisaged appear at present more arduous, but perhaps eventually more simple and safe. A promising symbiosis of fusion-fission is also mentioned.
PL
Urządzeniem laboratoryjnym, w którym uzyskano reakcję syntezy jądrowej w warunkach temperatury pokojowej było ogniwo galwaniczne. Podano bardzo obszerny rys historyczny ogniw. Opisano eksperyment Ponsa i Fleischmanna, którzy w ogniwie galwanicznym zastosowali specjalnie przygotowane elektrody z palladu, zanurzone w ciężkiej wodzie (deuteru i tlenu). Podano stanowisko Departamentu Energii Rządu USA dotyczące fuzji jądrowej w temperaturze pokojowej (2004 r.) oraz uwagi sympozjum Amerykańskiego Towarzystwa Fizycznego (2007). Wymieniono firmy, które wykazały zainteresowanie rozwojem zimnej syntezy jądrowej.
EN
Laboratory device in which nuclear fusion reaction in room temeperature was obtained was a galvanic cell. Given is detailed historic outline of cells. Described is the Pons and Fleischmann experiment in which specially prepared palladium electrodes were immersed in heavy water (deuterium oxide). Given is the USA Government Energy Department attitude to the room temperature nuclear fusion (2004) as well as the American Physics Society symposium remarks (2007). Specified are companies interested in cold fusion development.
EN
The plasma focus is a source of pulsed radiation, which is of interest in various fields of physics and technology. Applications include soft X-ray microscopy, soft X-ray and electron beam lithography. The plasma focus is also a highly efficient source of fast neutrons. If one applies gas puffing instead of static filling, decoupling of plasma conditions in the breakdown and compression phases can be achieved. Results of experiments with a fast valve and accompanying 2D modelling of the dynamic gas target are presented. Among other advantages of gas puffing, neutron yield could be increased up to a factor of three in appropriate experiments. The concept of gas puffing has been extensively investigated in many Z-pinch experiments including multiple gas puffs. It seems desirable to increase the efforts to understand and optimise the gas puffing option for small and large plasma focus devices.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.