Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  normatywy higieniczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Wdrażane w ostatnich latach zmiany normatywów higienicznych środowiska pracy w przepisach wpływają na ocenę ryzyka zawodowego w górnictwie odkrywkowym związanym z kruszywami. Artykuł zwraca uwagę na zmiany, jakie spotykają przedsiębiorcy górniczy w ocenie ryzyka zawodowego w środowisku pracy, związane ze zmianą niektórych normatywów higienicznych w górnictwie kruszyw i surowców skalnych.
EN
Amendments to the hygienic norms of the work environment that have been implemented by legal regulations in recent years affect risk assessment in aggregate opencast mining. The article emphasises changes in the assessment of risks in the work environment of mining plants that are related to amendments to hygienic norms in aggregate and rock mineral mining.
PL
Szkodliwe czynniki biologiczne (SCB) stanowią poważne, choć często bagatelizowane zanieczyszczenie środowiska pracy. Brak rutynowej kontroli jakości higienicznej środowiska pracy uwzględniającej obecność czynników biologicznych i wciąż niska świadomość istnienia tego problemu może stworzyć realne i poważne zagrożenie dla zdrowia pracowników. W artykule podano definicję SCB, omówiono powszechność występowania zagrożeń biologicznych, rolę bioaerozoli jako najpowszechniejszej formy ich transportu w środowisku, scharakteryzowano źródła SCB w środowisku pracy, przedstawiono wymogi prawne oraz metody kontroli, oceny narażenia i ryzyka. Przedstawiono też bieżące i nowe wyzwania, jakie stoją dziś przed nauką i techniką, a które mają lub będą miały wpływ na kontrolę i zapobieganie skutkom niekorzystnego oddziaływania SCB na człowieka w środowisku pracy i poza nim.
EN
Harmful biological agents (HBA) are serious, however quite frequently underestimated, contaminants of occupational settings. A lack of routine control of hygienic quality in working environment regarding the presence of biological agents together with a low awareness of contamination problems may create a real and considerable danger for workers' health. In this paper definition of HMA is given, widespread of biohazards in the environment is discussed, role of bioaerosols as the most common way if transport is described, sources of HMA in working environment are characterized and legal measures applied in control, exposure and risk assessments are presented. The problems of current and future scientific and technical challenges related to control and prevention of adverse health outcomes caused by HMA in exposed individuals in both occupational and non-occupational environments are also discussed in this paper.
3
Content available Nitrobenzen
PL
Nitrobenzen (NB) występuje w postaci jasnożółtawych kryształów lub żółtawej oleistej cieczy o zapachu gorzkich migdałów. Otrzymuje się go przez bezpośrednie nitrowanie benzenu. W Polsce nitro-benzen jest produkowany w Gliwicach (Polskie Odczynniki Chemiczne) i stosowany jako składnik preparatów: Mors, Nitro I, Nitro II, Nitro III i Nitro IV. Około 95 ÷ 99% światowej produkcji nitrobenzenu wykorzystuje się do otrzymywania aniliny. Nitro-benzen jest stosowany także do syntezy wielu innych związków chemicznych i jako rozpuszczalnik. Narażenie ludzi na nitrobenzen jest związane z narażeniem zawodowym podczas jego produkcji lub stosowania. W latach 1997-2000 nie zanotowano w przemyśle polskim narażenia pracowników na nitrobenzen o stężeniach, które przekraczały obowiązującą wartość najwyższego dopuszczalnego stężenia wynoszącą 3 mg/m3. Niekorzystne działanie nitrobenzenu w zatruciu ostrym u ludzi przejawia się przede wszystkim wy-stąpieniem sinicy będącej wynikiem podwyższonego stężenia methemoglobiny (MetHb) we krwi i hemolizy krwinek czerwonych. Obserwowano również bóle głowy, nudności, wymioty, duszność, stany splątania, ból w klatce piersiowej, spadek wentylacji płuc i śpiączkę prowadzącą do śmierci. Przewlekłe narażenie pracowników na nitrobenzen o stężeniu 5 mg/m3 (1 ppm) nie było przyczyną wystąpienia zmian w stanie ich zdrowia. Podwyższony poziom MetHb we krwi stwierdzono u ludzi narażonych na nitrobenzen o stężeniu 30 mg/m3. Nitrobenzen wykazywał umiarkowaną toksyczność ostrą w doświadczeniach na zwierzętach. Wartość DL50 dla zwierząt po podaniu dożołądkowym ustalono w granicach 349 ÷ 640 mg/kg. Medialne stężenie śmiertelne po narażeniu inhalacyjnym szczurów wynosiło 2780 mg/m3 (556 ppm). Najczęstsze i najszybciej występujące skutki działania związku u szczurów narażonych na nitrobenzen w warunkach narażenia ostrego to wzrost stężenia MetHb we krwi oraz zmniejszenie zdolności wytwarzania plemników u samców (po dawce 200 mg/kg podanej dożołądkowo lub dootrzewnowo). Objawy te nasilały się po zwiększeniu dawek. Po dawce 450 ÷ 550 mg nitrobenzenu/kg masy ciała zwierząt obserwowano ponadto uszkodzenie ośrodkowego układu nerwowego (oun) i zmiany w wątrobie. Dożołądkowe podanie nitrobenzenu samcom szczurów przez 2 ÷ 4 tygodnie spowodowało już po dawce 50 mg/kg spadek produkcji plemników. Pierwsze objawy methemoglobinemii zanotowano po 28 dniach podawania szczurom dawki 200 mg nitrobenzenu/kg masy ciała. Wraz ze wzrostem dawki (do 600 mg/kg) skutek ten się nasilił. Dwutygodniowe narażenie inhalacyjne szczurów na nitrobenzen o stężeniach 60 lub 195 mg/m3 powodowało zmiany hematologiczne, a po narażeniu na związek o stężeniu 562 mg/m3 obserwowano: spadek masy ciała, sinicę, ataksję, zmiany w śledzionie, oun, nerkach, wątrobie, płucach oraz padnięcie 70% narażanych zwierząt. Po 90-dniowym i 2-letnim narażeniu inhalacyjnym szczurów na nitrobenzen o stężeniu 25 mg/m3 stwierdzono wzrost poziomu MetHb we krwi. Skutek ten nasilał się po narażeniu na związek o większym stężeniu (80 lub 250 mg/m3 w eksperymencie 90-dniowym oraz 125 mg/m3 w doświadczeniu 2-let-nim). Po 2-letnim narażeniu szczurów na nitrobenzen o stężeniu 5 mg/m3 (1 ppm) obserwowano gromadzenie się barwnika w błonie śluzowej nosa. Po 90-dniowym narażeniu szczurów na nitrobenzen o stężeniu 250 mg/m3 stwierdzono ponadto zmiany w wątrobie, śledzionie, płucach i nerkach, zaś po 2-letnim narażeniu na związek o stężeniu 125 mg/m3 także atrofię jąder. Nitrobenzen nie wykazywał działania mutagennego, klastogennego, embriotoksycznego i teratogennego. Po przewlekłym narażeniu zarówno szczurów, jak i myszy na nitrobenzen zanotowano zwiększoną częstość występowania niektórych typów nowotworów. Nitrobenzen wchłania się w postaci par przez płuca i skórę. Narażenie na nitrobenzen o stężeniu 5 mg/m3 odpowiada dziennemu pobraniu na poziomie 25 ÷ 33 mg związku, z czego około 7 ÷ 9 mg nitrobenzenu było absorbowane przez skórę. Nitrobenzen może także wchłaniać się do organizmu drogą pokarmową. Metabolizm nitrobenzenu w organizmie może przebiegać dwiema drogami – przez redukcję do ani-liny i hydroksylację do aminofenoli (redukcja do aniliny przebiega przez niestabilny nitrozobenzen i fenylohydroksyloaminę, które są toksyczne i prowadzą do powstawania methemoglobiny) oraz przez hydroksylację do nitrofenoli (później może nastąpić redukcja nitrofenoli do aminofenoli). Wydalanie z moczem p-nitrofenolu może być podstawą do wyznaczenia wartości DSB (dopuszczalnego stężenia w materiale biologicznym). Mechanizm toksycznego działania nitrobenzenu w organizmie jest związany z niedotlenieniem spowodowanym methemoglobinotwórczym działaniem jego metabolitów – nitrozobenzenu (p-chinonoiminy) oraz β-fenylohydroksyloaminy. Toksyczne działanie nitrobenzenu nasila się po jednocze-snym podaniu etanolu. Podstawą wartości NDS (najwyższego dopuszczalnego stężenia) nitrobenzenu jest methemoglobino-twórcze działanie związku obserwowane u ochotników i pracowników narażonych na nitrobenzen w przemyśle oraz methemoglobinotwórcze działanie nitrobenzenu obserwowane u szczurów i myszy narażonych inhalacyjnie na związek przez 90 dni. Na podstawie wyników badań zaproponowano przyjęcie stężenia 1 mg/m3 za wartość NDS nitrobenzenu podobnie jak w UE (dyrektywa 2006/15/WE). Nie ma podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nitrobenzenu. Wartość dopuszczalnego stężenia w materiale biologicznym (DSB) nitrobenzenu ustalono na poziomie 2% methemoglobiny we krwi. Wartość tę ustalono dla 1wszystkich substancji działających methemoglobinotwórczo. Zaproponowano oznakowanie normatywu literami „Sk”, z uwagi na możliwość wchłaniania się nitrobenzenu przez skórę.
EN
Nitrobenzene (NB) is a colorless-to-pale yellow, oily liquid. Its odor resembles bitter almonds. NB is produced by the direct nitration of benzene. NB has a wide variety of uses. Most significantly, and accounting for 95-99% of NB, in manufacturing aniline and aniline-derived products, and as a solvent. Potential for human exposure is principally via inhalation and dermal uptake, following the use and production of NB. Methaemoglobinaemia, with cyanosis, haemolysis, headache, dyspnoe, weakness and ultimately coma and death, are the main effects of acute NB poisoning. Severe methaemoglobinaemia and liver damage have also been reported following chronic occupational exposure to NB. In subacute and chronic forms of poisoning, anaemia is the leading feature of the clinical picture. However, neurotoxic symptoms (including vertigo, headache, and nausea), hepatotoxicity (enlarged liver, uterus, and altered serum chemistry, hiperbilirubinemia), mild irritation of the eyes, and contact dermatitis have been reported, too. NB at a concentration of 5 mg/m3 (1 ppm) is considered a safe level for daily exposure. An elevated level of the methaemoglobin in the blood was observed after chronic exposure to NB at a concentration of 30 mg/m3 (6 ppm). The single oral LD50 for NB in animals was 349-640 mg/kg bw, and LC50 in rats was 2780 mg/m3 (556 ppm). Acute exposure of rats to ≥ 200 mg NB/kg bw resulted in elevated methaemoglobin and increase inci-dence of testicular atrophy and epididymal hypospermic, while a higher dose (550 mg/kg bw) resulted in hepatotoxicity and neurotoxicity. Methaemoglobinaemia was observed in rats at 25 mg/m3 (5 ppm) following 90-day and chronic inha-lation exposure. Long-term (two-year) inhalation study with 5 mg NB/m3 (1 ppm) resulted in mini-mal health effects such as pigment deposition in the nasal epithelium in rats. Cytomegaly of centrilobu-lar hepatocytes was induced in mice and rats at ≥ 25 mg NB/m3 (5 ppm). An increased incidence of testicular atrophy and epididymal hypospermia was observed in rats at 125 mg/m3 (25 ppm). NB has non-mutagenic, clastogenic, embryotoxic and teratogenic effects. The compound administe-red to rats or mice repeatedly (long-term studies) induced some types of neoplasms. NB absorption takes place mainly through the respiratory tract and skin. NB is metabolized via two main pathways: (1) reduction to aniline with subsequent hydroxylation to aminophenols, and (2) direct hydroxylation with formation of nitrophenols. NB is transformed into nitrosobenzene. Nitroso-benzene is transformed into phenylhydroxylamine. The reverse reaction (phenylhydroxylamine to nitrosobenzene) in erythrocytes takes place in a coupled reaction whereby methaemoglogin is formed from haemoglobin. All metabolites (except nitrophenols and phenylhydroxylamine) were found in the urine of exposed humans and animals. The current TLV-TWA of 1 mg/m3 (0,2 ppm) for NB, with a skin notation, is based on the preven-tion of methaemoglobinaemia, which is the first sign of overexposure to NB. No STEL is recommen-ded. Biological Exposure Indices (BEI) have been established for methaemoglobin inducers (2% met-haemoglobin in the blood).
4
Content available Fluorki – w przeliczeniu na F
PL
Fluorki metali są to sole kwasu fluorowodorowego. Do ważniejszych fluorków należą: fluorek sodu (NaF), fluorek wapnia (CaF2), fluorek potasu (KF) i kryolit (3NaF. AlF3). Narażenie zawodowe na fluorki ma miejsce w kopalniach i zakładach przerabiających: fluoryt, kryolit i apatyt. Fluorki są obecne oraz emitowane w procesach produkcji: stali, żelaza, glinu, szkła ceramiki i emalii. Są także składnikami otulin elektrod spawalniczych. Wchłanianie fluorków z płuc i z przewodu pokarmowego zwiększa się ze wzrostem ich rozpuszczalności w wodzie. Stwierdzono, że wydajność wchłaniania związków dobrze rozpuszczalnych w wodzie wynosi 90 ÷ 96%. Związki słabo rozpuszczalne w wodzie są wchłaniane wolniej i z mniejszą wydajnością, np. tylko 62% fluorku wapnia uległo wchłonięciu po podaniu drogą pokarmową. Fluorki wykazują działanie drażniące. Skutek ten stwierdzano, gdy stężenia fluorków przekraczały 10 mg/m3, natomiast objawy działania drażniącego nie występowały, gdy stężenia związku były mniejsze niż 2,5 mg/m3. W organizmie fluorki kumulują się głównie w kościach, przy czym ilości deponowane w tkance kostnej dzieci są większe (około 50%) niż u osób dorosłych (około 10%). Deponowanie fluoru w kościach zachodzi głównie w miejscach kostnienia i wapnienia. Główną drogę wydalania stanowią nerki. Około 50% podanej dawki wydala się w moczu, 6 ÷ 10% z kałem i 13 ÷ 23% z potem. Pozostała ilość ulega kumulacji w tkance kostnej. Proces wydalania fluorków ma charakter wielofazowy. Zwiększone wchłanianie fluorków w dłuższym okresie może prowadzić do fluorozy układu kostnego, tj. do patologicznego formowania kości. Fluoroza układu kostnego była opisywana głównie u osób zatrudnionych: przy produkcji aluminium, w odlewniach magnezu, przy przerobie fluorytów i produkcji superfosfatu. Początki osteofluorozy są czasem bezobjawowe i mogą być stwierdzane radiologicznie jako wzrost gęstości różnych kości, szczególnie kręgosłupa i miednicy. Przeprowadzono badania 74 robotników zatrudnionych w zakładzie produkującym fosforanowe nawozy sztuczne. Fluorki były obecne w powietrzu w postaci pyłów i gazów. Wyniki odnoszono do grupy kontrolnej. Nie stwierdzono zmian gęstości kości w grupie pracowników narażanych na związek o stężeniu średnio 2,65 mg/m3 (0,5 ÷ 8,3 mg/m3 w przeliczeniu na fluor), podczas gdy zmiany takie wystąpiły u 17 robotników narażanych na związek o średnim stężeniu 3,38 mg/m3 (1,78 ÷ 7,73 mg/m3). Wyniki badań środowiskowych wskazują, że zmiany struktury kości stanowiące główny skutek przewlekłego narażenia na fluorki nie występowały, gdy stężenia fluorków w 24-godzinowych zbiórkach moczu były mniejsze niż 5 mg/l. W dwóch badaniach przeprowadzonych w warunkach przemysłowych nie stwierdzono zmian w budowie kości, jeżeli stężenia fluorków w próbkach moczu pobranych przed rozpoczęciem zmiany nie przekraczały 3,4 mg/l oraz gdy stężenia w próbkach moczu pobranych przed zakończeniem zmiany nie były większe niż 13 mg/l. Fluoroza szkieletowa występowała także w Indiach i w Chinach w wyniku spożywania wody o wysokiej zawartości fluorków (powyżej 10 mg/l). Uważa się, że codzienne pobieranie drogą pokarmową 8 mg fluorków może być szkodliwe dla osób dorosłych. Na podstawie wyników badań eksperymentalnych na zwierzętach potwierdzono otrzymane wcześniej wyniki badań, którym poddano ludzi, wskazujące, że układ kostny jest układem docelowym w przypadku narażenia zawodowego i środowiskowego na fluorki. Działanie genotoksyczne fluorków stwierdzano, wówczas gdy podawane dawki były bardzo toksyczne dla komórek i organizmów. Mniejsze dawki nie powodowały skutków działania genotoksycznego. W IARC zaliczono fluorki do grupy 3., czyli do związków nieklasyfikowanych jako czynniki rakotwórcze dla człowieka ze względu na brak dowodów działania u ludzi oraz brak lub niewystarczające dowody ich działania na zwierzęta. W ACGIH zaliczono fluorki do grupy A4, czyli do substancji nieklasyfikowanych jako czynniki rakotwórcze dla człowieka. Zakresy wartości normatywów higienicznych (TWA) fluorków wynoszą w różnych państwach od: 0,6 mg/m3 w Norwegii, 1 mg/m3 na Węgrzech, 1,5 mg/m3 w Szwajcarii i 2 mg/m3 w Szwecji oraz do 2,5 mg/m3 w większości państw. Wydaje się celowa zmiana dotychczasowej wartości najwyższego dopuszczalnego stężenia (NDS) z 1 mg/m3 na 2 mg/m3 z zastosowaniem przeliczania na F-, a nie na HF. Wartość ta powinna zabezpieczać ludzi także przed działaniem drażniącym związku. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) fluorków. Na podstawie danych zamieszczonych w dokumentacji można przyjąć stężenie 3 mg/g kreatyniny w próbkach moczu pobranych przed rozpoczęciem zmiany oraz 9 mg/g kreatyniny w próbkach moczu pobranych pod koniec zmiany za wartości dopuszczalnego stężenia w materiale biologicznym (DSB) fluorków. Przestrzeganie powyższych zaleceń powinno zapobiegać występowaniu u osób narażonych fluorozy kości.
EN
Fluorides are defined as binary compounds or salts of fluorine and another element. The chief fluoride minerals are fluorspar ( CaF2) and cryolite ( Na3AlF6). The fluorides of alkali metals such as sodium fluoride are soluble in water. Those of alkaline earth such as calcium fluoride, are insoluble or sparingly soluble in water. Inorganic fluorides find a variety of commercial uses. Soluble fluoride compounds are readily absorbed from the lungs and gastrointestinal tract. Studies in humans and animals have found that 90 ÷ 96 % of an oral dose of soluble fluoride compounds is absorbed. Poorly soluble fluoride compounds, such as calcium fluoride do not appear to be well absorbed. Fumes, containing fluoride in concentrations above 10 mg/m3 were irritating. No effects were noted at levels below 2.5 mg/m3. The largest concentration of fluoride in the body is found in calcified tissues. Fluoride deposition in bone occurs mainly in regions undergoing active ossification and calcification. The amount of fluoride taken up by bone is inversely related to age. The primary pathway for fluoride excretion is via the kidneys and urine (about 50%). To a lesser extent fluoride is also excreted in the feces, sweet, and saliva. Fluoride elimination after intermittent exposure is triphasic. Marked evidence of skeletal fluorosis was reported in workers exposed to gaseous fluoride and fluoride dust in the pot rooms of the aluminium industry, in magnesium foundry, in the process of crushing and refining of creolite. No changes in bone density were found in a group of workers exposed in concentrations of fluoride averaging 2.65 mg/m3, while such changes were detected in workers with exposures averaging 3.38 mg/m3. No bone structure changes were observed if fluoride concentrations in 24-hour urine specimens were lower than 5 mg/l. Pharmacokinetic studies indicate that such no-effect level in 24-hour urine specimens is most likely to be achieved if the fluoride concentration in end-of-shift specimens is 9 mg/l and in preshift specimens is 2 mg/l. In general positive genotoxicity findings occurred at doses that are highly toxic to cells and whole animals. Carcinogenic classification – IARC, group 3 – not classifiable as to carcinogenicity to humans; ACGIH – A4 – not classifiable as human carcinogen. Occupational exposure limits ( TWA) amount in different countries from 0.6 mg/m3 to 2.5 mg/m3. The Expert Group recommended a OEL-TWA 2 mg/m3 and biological exposure index (BEI) of 9 mg/g creatinine for the end-of-shift samples of urine and 3 mg/g creatinine for preshift samples of urine.
PL
Beryl (Be) jest strategicznym surowcem dla wielu rodzajów przemysłu. Jest powszechnie stosowany mimo stosunkowo wysokiej ceny, ze względu na znacznie lepsze parametry niż wykazywane przez alternatywne materiały. Zastosowanie przemysłowe mają trzy podstawowe postaci berylu. Najważniejszą stanowi stop berylu z miedzią, a następnie forma metaliczna i tlenek berylu. Liczba osób narażonych na beryl w warunkach przemysłowych ulega zwiększeniu w wyniku wzrostu zastosowania berylu, przy jednoczesnym zmniejszaniu stężeń metalu w powietrzu w miarę uzyskiwania informacji na temat jego toksycznego działania. Średnie stężenia ważone w powietrzu dla 8-godzinnego czasu narażenia wynosiły > 50 ug/m3 w połowie lat sześćdziesiątych i > 30 ug/m3 w połowie lat siedemdziesiątych. Obecnie wartości stężeń berylu w warunkach przemysłowych są poniżej 0,002 mg/m3 (2 ug/m3). Narażenie drogą inhalacyjną na beryl stwarza większe zagrożenie dla zdrowia ludzi niż narażenie drogą pokarmową. Wydajność wchłaniania berylu i jego związków z przewodu pokarmowego jest mała. Narażenie inhalacyjne powoduje kumulację berylu i jego związków w płucach, szczególnie w węzłach chłonnych płuc, jak również w kościach, stanowiących docelowe miejsce kumulacji berylu w organizmie. Stężenia berylu w moczu u osób nienarażonych zawodowo na działanie związku wynosiły poniżej granicy wykrywalności metody, tj. 0,03 ÷ 0,06 ug/l. W wyniku narażenia zawodowego na związki berylu u ludzi stwierdzano występowanie zapalenia skóry, pylicę płuc i przewlekłą chorobę berylową (beryloza, CBD). Kontakt ze skórą rozpuszczalnych związków berylu może być przyczyną obrzęku, rumienia czy grudkowo-pęcherzykowego zapalenia skóry. Zmiany te zwykle ustępują po przerwaniu narażenia. Obserwowano również ziarniniakowate zmiany martwicze skóry i owrzodzenia powodowane penetracją nierozpuszczalnych związków berylu. Zmiany te były wynikiem opóźnionej nadwrażliwości na działanie związku. Ostre działanie toksyczne berylu występujące w wyniku narażenia na związek o stężeniach powyżej 25 ug/m3 objawia się podrażnieniem skóry, oczu, nosa i gardła, które może prowadzić do zapalenia górnych i dolnych dróg oddechowych, obrzęku płuc, a narażenie na związek powyżej 100 ug/m3 – do zapalenia płuc. Przewlekła choroba berylowa (CBD) jest najbardziej charakterystycznym skutkiem narażenia zawodowego na beryl. Beryl działający jako hapten wchodzi w reakcję z antygenem zgodności tkankowej MHC II. W tej postaci jest rozpoznawany przez swoiste limfocyty pomocnicze T CD4. Dochodzi do aktywacji kaskady zapalnej zależnej od limfocytów T i produkcji prozapalnych cytokin. Rezultatem tego procesu jest tworzenie nieserowaciejących ziarniniaków w tkance płucnej. Objawy kliniczne przewlekłej choroby berylowej mogą wystąpić po 3 miesiącach, ale również po 30 latach od rozpoczęcia pracy w narażeniu. W celu wczesnej diagnostyki berylozy stosuje się test proliferacji limfocytów krwi obwodowej i płynu pęcherzykowo-oskrzelowego w obecności berylu (BeLPT). Wartość LOAEL dla działania uczulającego berylu i rozwoju CBD określono na poziomie 0,55 ug Be/m3. Ostatnie doniesienia wskazują, że wartość ta może wynosić powyżej 0,2 ug/m3. Ustalono na podstawie wyników badań, że w celu zapobiegania powstaniu CBD dopuszczalne średnie stężenie ważone berylu w powietrzu powinno wynosić poniżej 0,0002 mg/m3 (0,2 ug/m3). Zawodowe narażenie na beryl i jego związki powodowało zwiększenie u ludzi ryzyka wystąpienia raka płuc. Ryzyko to było większe u osób z objawami ostrej berylozy płucnej niż u osób z CBD. Międzynarodowa Agencja Badań nad Rakiem (IARC 1993) uznała, że istnieją wystarczające dowody rakotwórczego działania berylu i jego związków u ludzi (Grupa 1). Według US EPA ryzyko jednostkowe wynosi 2,4 • 10-3 ug/m3. Wydaje się, że występowanie raka płuc u ludzi przed 1950 r. było wynikiem narażenia zawodowego na beryl o dużym stężeniu powodującym występowanie ostrej berylozy.
EN
Beryllium is a strategic and critical material for many industries. It is widely used because for certain critical applications it performs better than alternatives. The beryllium industry produces three primary forms of beryllium. Copper beryllium alloy is the largest, followed by pure beryllium metal and beryllium oxide ceramics. As result of the increasing industrial use of beryllium, occupational exposure to the metal is an important issue. The estimated daily weighted average beryllium exposure levels in plant that extracted and produced beryllium metal were > 50 μg/m3 during the mid-1960s, In mid-1970s, the exposure levels were > 30 μg/m3. At present, beryllium concentrations during different industrial processes tend to be below 2 μg/m3. Exposures to beryllium are much more hazardous by the inhalation route than by the ingestion route. Beryllium and its compounds are poorly absorbed from the gastrointestinal tract. In general, inhalation exposure to beryllium results in long-term storage of beryllium in lung tissue and in the skeleton, which is the ultimate site of beryllium storage. Urinary beryllium concentrations are below the detection limits of 0,03 ÷ 0,06 μg/l. Exposure to beryllium compounds has caused dermatitis, acute pulmonary inflammation, and chronic beryllium disease (CBD). Exposure to soluble beryllium salts may cause skin reactions such as edematous, erythematous, and papulovesicular dermatitis. Those changes usually disappear after cessation of exposure. Granulomatous necrotic changes and ulcerations caused by skin penetration by insoluble beryllium salts were also observed. These changes are based on delayed allergic hypersensitivity. Acute toxicity of beryllium at concentrations usually > 25 μg/m3 is manifested by skin, eye, nose, and throat irritation, followed by upper and lower airway inflammation, pulmonary edema, and (> 100 μg/m3 ) chemical pneumonitis.
6
Content available 1,2-Dichloropropan
PL
1,2-Dichloropropan (1,2-DCP) jest bezbarwną cieczą o słodkawym zapachu podobnym do chloroformu, stosowaną jako rozpuszczalnik żywic, smarów, tłuszczów, smół i asfaltów. Związek znajduje zastosowanie w wielu procesach technologicznych, w tym do impregnacji, oczyszczania i odtłuszczania powierzchni metali w procesach galwanizacyjnych, do usuwania farb, w pralniach do czyszczenia na sucho i do usuwania ołowiu z benzyny. Występuje jako składnik fumigantów oraz insektycydów. Stosowany jest w syntezie tetrachloroetylenu i tetrachlorku węgla. Według danych służb sanitarno-epidemiologicznych w 2000 r. w Polsce na 1,2-dichloropropan było narażonych kilkadziesiąt osób. Nie zgłaszano narażenia na związek o stężeniach ponadnormatywnych, czyli > 50 mg/m3. 1,2-Dichloropropan jest hepatotoksyczny dla zwierząt laboratoryjnych, ponieważ narażenie na tę substancję powoduje uszkodzenie wątroby i nerek oraz wielokrotny wzrost aktywności enzymów wątrobowych w osoczu. Istnieją dowody, że związek może powodować depresję ośrodkowego układu nerwowego. Zatrucie mieszaniną rozpuszczalników czyszczących zawierających 1,2-dichloropropan u ludzi powodowało śpiączkę, utratę świadomości, niewydolność serca, nieodwracalny szok i w rezultacie śmierć. Wykazano słabe działanie genotoksyczne 1,2-dichloropropanu w limfocytach ludzkich w hodowli w warunkach in vitro. Nie wykazano działania teratogennego 1,2-dichloropropanu, a dostępne dane dostarczają ograniczonych dowodów działania toksycznego związku na ciężarne samice i płody. Wchłanianie związku w miejscu pracy następuje drogą inhalacyjną. Opisano zapalenie skóry u pracowników narażonych na 1,2-dichloropropan. Podczas wyznaczania wartości najwyższego dopuszczalnego stężenia (NDS) wykorzystano wyniki 13-tygodniowych badań inhalacyjnych na szczurach obu płci narażanych na 1,2-dichloropropan o stężeniach: 70; 230 lub 700 mg/m3. Za efekt krytyczny przyjęto statystycznie znamienne zmniejszenie masy ciała (o 10%). Zmiany degeneracyjne nabłonka węchowego w głowowej części jamy nosowej obserwowano u wszystkich zwierząt narażanych na związek o stężeniach 230 lub 700 mg/m3. Stan zapalny krtani opisano u szczurów narażanych na 1,2-dichloropropan o stężeniu 700 mg/m3. Stężenie 230 mg/m3 1,2-dichloropropanu przyjęto za wartość najniższego obserwowanego poziomu działania szkodliwego (LOAEL) związku. Po zastosowaniu odpowiednich współczynników niepewności ustalono, że wartość NDS 1,2-dichloropropanu wynosi 50 mg/m3, czyli tyle, ile wynosi obowiązująca wartość NDS tego związku. 1,2-Dichloropropan nie został zaklasyfikowany jako substancja drażniąca w wykazie substancji niebezpiecznych, nie znaleziono również danych na temat jego działania drażniącego na drogi oddechowe ludzi, dlatego nie ustalono wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) dla tego związku. Nie ma także podstaw do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) 1,2-dichloropropanu.
EN
1,2-Dichloropropane (1,2-DCP) is a colorless liquid, with a chloroform-like odour, used as an industrial solvent (resins, lubricants, bitumens, asphalts, paints) for specific technological processes or as a cleaning and soil fumigant. In experiments on animals, exposure to high levels of 1,2-DCP caused injury of the liver, kidneys and the respiratory tract. Respiratory effects were reported in humans following oral and dermal exposure. A case of dermatitis resulting from dermal exposure to mixtures of solvents containing 1,2-DCP was reported. On the basis of LOAEL for the irritation effect of the upper respiratory tract obtained from an animal study, the TLV value was calculated at 50 mg/m3.
PL
Omówiono uregulowania prawne dotyczące czynników rakotwórczych i mutagennych przyjęte w Polsce, a także zasady oceny narażenia i ryzyka związanego z występowaniem substancji rakotwórczych na stanowiskach pracy oraz ochrony zdrowia pracowników narażonych na ich działanie. Przedstawiono również aktualne dane o zawodowych chorobach nowotworowych, ocenie narażenia na substancje ropopochodne i węglopochodne oraz dane statystyczne na ten temat. Omówiono także uregulowania prawne dotyczące czynników rakotwórczych i mutagennych w państwach Unii Europejskiej. Carcinogenic and mutagenic agents in Polish and UE legal regulations.
EN
The article presents Polish regulations for carcinogenic and mutagenic agents, the evaluation of carcinogenic/ mutagenic risks and prevention of workers’ health occupationally exposed to them. Information about occupational cancer, data collected on the exposure to carcinogenic or mutagenic hydrocarbons or substances derived from coal and statistical data is also presented. Moreover, some information about UE regulations in this area is given.
PL
Spaliny silnika Diesla są niepożądanymi produktami spalania olejów napędowych. Narażenie zawodowe na spaliny Diesla występuje m.in. wśród kierowców, pracowników kolei, strażaków, pracowników zajezdni autobusowych i garaży oraz celników, policjantów, górników i operatorów dźwigów. W warunkach narażenia zawodowego spaliny są wchłaniane w układzie oddechowym. Spaliny silnika Diesla zawierają tysiące substancji chemicznych, które występują w postaci gazowej i w postaci cząstek stałych. Cząstki stałe o wymiarach 0,1 ÷ 0,5 µm wchłaniają się bardzo łatwo i kumulują w pęcherzykach płucnych. Mogą pozostawać w nich nawet przez kilkaset dni, co prowadzi do chronicznych zaburzeń w układzie oddechowym, a także potencjalnie działa rakotwórczo. W warunkach narażenia ostrego spaliny wywołują podrażnienie błon śluzowych oczu i górnych dróg oddechowych, bóle oraz zawroty głowy, zmęczenie i nudności. U pracowników narażonych przewlekle na spaliny silnika Diesla stwierdzono częste występowanie obturacyjnych zaburzeń wentylacji płuc. Zależność między narażeniem na spaliny a występowaniem nowotworów złośliwych u ludzi, szczególnie raka płuca, była przedmiotem wielu badań epidemiologicznych. Wartość medialnej dawki śmiertelnej (DL50) dla myszy po dotchawiczym narażeniu na cząstki stałe pochodzące ze spalin wynosi 20 mg/kg, natomiast po dootrzewnowym podaniu chomikom – 1280 mg/kg. Przewlekłe narażenie myszy, szczurów, chomików i kotów nie spowodowało pojawienia się zmian ogólnoustrojowych. Takie parametry, jak: wzrost masy płuc, nagromadzenie obładowanych cząstkami spalin makrofagów, zahamowanie procesu oczyszczania pęcherzyków płucnych, zmiany zapalne w płucach oraz obniżenie dynamicznych wskaźników wentylacji płuc (FEV1 i FVC) były zależne od wielkości stężenia. Wykazano działanie mutagenne i genotoksyczne organicznych ekstraktów cząstek stałych spalin oraz zdolność tworzenia adduktów z DNA. Spaliny silnika Diesla nie są czynnikiem zaburzającym kluczowe etapy procesu rozrodu zwierząt. Cząstki stałe zawarte w spalinach indukują nowotwory płuc u zwierząt doświadczalnych, głównie gruczolaki i gruczolakoraki, przy czym jedynie u szczurów zmiany te były znamienne statystycznie i powtarzalne. Wartość najmniejszego stężenia cząstek stałych w czasie narażenia nie krótszym niż 2 lata, po którym obserwowano zmiany nowotworowe, wynosiła 4 mg/m3. Pomimo informacji o kilku przeprowadzonych badaniach epidemiologicznych osób zawodowo narażonych na spaliny silników Diesla, nie można, z powodu braku ilościowej oceny narażenia w przeszłości, wykorzystać rezultatów tych badań do budowy zależności dawka-odpowiedź. Zatem do ilościowej oceny ryzyka zostaną wykorzystane wyniki badań na zwierzętach. Wartości proponowanych najwyższych dopuszczalnych stężeń (NDS) przy zastosowaniu modelu liniowego będą wynosiły odpowiednio: 5,1 mg/m3, gdy ryzyko wynosi 0,01; 0,51 mg/m3, gdy ryzyko wynosi 0,001 oraz 0,05 mg/m3, gdy ryzyko wynosi 0,0001. Na podstawie przeprowadzonej analizy dostępnych danych z piśmiennictwa oraz ilościowej oceny ryzyka, proponujemy przyjęcie dla spalin silnika Diesla (frakcja respirabilna – cząstki stałe) wartości NDS wynoszącej 0,5 mg/m3. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Spaliny silnika Diesla są uważane za prawdopodobnie rakotwórcze dla ludzi.
EN
Diesel exhaust contains components of complete combustion such as nitrogen, carbon dioxide and of incomplete combustion such as nitrogen oxides, carbon, monoxide, hydrocarbons, aldehydes, phenols, sulfur compounds, which can cause irritation of the upper respiratory track. Diesel exhaust also produces submicron-sized particles that cause soiling and poor visibility. These particles have been regarded as presenting only a minimal health risk; however, the presence of carcinogens adsorbed on the particles has raised concerns about the potential for lung cancer from exposure to diesel exhaust. Therefore, to establish MAC values for diesel exhaust data from studies on carcinogenic effects in laboratory animals were considered. A linear model was used in considering assessment of the risk for the worker population. Based on acceptable risk 10-3 MAC value for diesel exhaust was calculated to be 0.5 mg/m3. No MAC-STEL values have been established.
PL
Alfametryna (alfa-cypermetryna) jest pyretroidem syntetycznym stosowanym jako insektycyd. Produkowana jest z kwasu cis-2,2 dimetylo-3-(2’2’ dichlorowinylo)-cyklopropanokarboksylowego, 3-fenoksybenzoaldehydu i cyjanku sodowego. Dostępnych jest kilka form użytkowych preparatu: CS – zawiesina kapsuł przeznaczonych do rozcieńczenia w wodzie, EC – koncentrat do sporządzenia emulsji wodnej oraz ULV – ciecz ultraniskoobjętościowa gotowa do zastosowania. Produkcja roczna alfametryny w Polsce wynosi około 100 tys. litrów 10-procentowego koncentratu. Alfametryna po bezpośrednim działaniu na skórę i błony śluzowe może powodować podrażnienie, zaczerwienienie i obrzęk. Nie opisano żadnego przypadkowego zatrucia tą substancją. Po podaniu dożołądkowym u gryzoni alfametryna wykazuje umiarkowanie dużą toksyczność zależną od jej stężenia w preparacie i od nośnika. Narażenie ostre dożołądkowe charakteryzują objawy kliniczne typowe dla pyretroidów – zaburzenie koordynacji ruchowej, bezład, pląsawica, nienormalny chód (tiptoe walk), a następnie pojawia się wzrost ślinienia i łzawienia, stroszenie włosów, drżenie i drgawki kloniczne. W większości przypadków padnięcie zwierząt następowało w ciągu pierwszych 3 h narażenia, a zwierzęta, które przeżyły, powracały do zdrowia w ciągu 7 dni. Toksyczność dermalna preparatu jest mała, a objawy kliniczne zależne od postaci preparatu. U szczurów po narażeniu na preparaty pour-on nie zaobserwowano zmian klinicznych. Preparat SC wywoływał krwiaki wokół nosa i oczu zwierząt. Po aplikacji preparatu EC lub ULV obserwowano łzawienie, zmierzwienie sierści, agresję i biegunkę. Natomiast u królików po naniesieniu na nieuszkodzoną i zdepilowaną skórę nierozcieńczona alfametryna była minimalnie drażniąca. Wszystkie formy użytkowe preparatu nie wykazywały działania drażniącego lub były tylko łagodnie drażniące. W teście Draize’a przeprowadzonym na królikach preparaty alfametryny powodowały ostre podrażnienie oczu, zmętnienie rogówki i uszkodzenie tęczówki. Alfametryna nie wykazuje skórnego działania uczulającego u świnek morskich. Na podstawie wyników testów z Salmonella typhimurium i Saccharomyces cerevisiae, zarówno z aktywacją metaboliczną, jak i bez aktywacji, wykazano, że alfametryna nie jest mutagenna. Ujemne wyniki uzyskano także w badaniach in vitro przeprowadzanych z chromosomami i DNA z komórek szpiku kostnego oraz wątroby szczurzej. Nie ma danych w dostępnym piśmiennictwie na temat działania kancerogennego, embriotoksycznego i teratogennego alfametryny, a także jej wpływu na rozrodczość. Alfametryna słabo wchłania się przez przewód pokarmowy, układ oddechowy i skórę. W związku z jej właściwościami lipofilnymi w większym stężeniu gromadzi się w tkance tłuszczowej, w skórze, wątrobie, nerkach nadnerczach i jajnikach. U ludzi szybkość wydalania jest zależna od dawki – około 43% dawki wydala się z moczem w ciągu pierwszych 24 h w postaci wolnego lub sprzężonego kwasu cis-cyklopropanokarboksylowego (cis-CPA). Wydalanie z moczem nie wzrastało po podaniu powtórnej dawki. Na podstawie wyników narażenia przewlekłego przeprowadzonego na psach przyjęto za wartość NOAEL alfametryny 90 mg/kg paszy (równoważnik około 2,25 mg/kg m.c./dobę). Dokonano jej przeliczenia na dawkę wchłaniana przez człowieka w czasie 8-godzinnego narażenia i obliczono wartość NDS z zastosowaniem trzech współczynników niepewności. Zaproponowano przyjęcie wartości NDS alfametryny wynoszącej 1 mg/m3.
EN
Alphamethrin (alpha-cypermethrin) is a synthetic pyretroid applied as an insecticide. It is produced from cis-2,2 dimethyl-3-(2’2’dichlorovinyl) cyclo-propanocarboxyl acid, 3-phenoxybenzoaldehyde and sodium cyanide. There are several forms of this preparation available for use (CS – capsule suspension designed for dilution in water, EC – concentrate to make an aqueous emulsion, ULC – ultra low volume liquid ready to use). Annual production in Poland is about 100,000 l of 10% concentration. Direct exposure to alphamethrin may result in skin and/or mucosa irritation, reddening and swelling. No case of poisoning has been reported. Intragastric administration of alphamethrin to rodents demonstrates moderately high toxicity dependent on the concentration of the preparation and on the carrier. The following clinical symptoms typical for pyretroids are observed in the case of acute intragastric exposure: disturbed coordination of movements, dyssynergia, chorea, abnormal gait and tip-toe walk. Increased salivation and lacrimation, ruffled fur, tremor and clonic convulsions are also characteristic. In the majority of cases animals died within the first 3 h, those who survived recovered within 7 days. The dermal toxicity of the preparation is low and clinical symptoms depend on the preparation form. No clinical alterations were seen in rats after exposure to pour-on preparations. SC preparation caused hematomas round the animals’ nose and eyes. After EC or ULV application lacrimation, ruffled fur, aggression and diarrhea were observed. In rabbits, undiluted alphamethrin spreaded on uninjured and depilated skin resulted in minimal irritation. All forms of the preparation for use did not demonstrate irritating activity or were only mildly irritating. In the Draeize test carried out on rabbits, alphamethrin preparations caused eye irritation, corneal opacification, iris injury. Alphamethrin does not demostrate skin sensitization in guinea pigs. In tests with Salmonella typhimurium and Saccharomyces cerevisiae, both with and without metabolic activation alphamethrin was detected not to be mutagenic. Negative results were also obtained in in vitro studies performed with chromosomes and DNA from rat bone marrow and liver cells. There are no available literature data on alphamethrin cancerogenic, embryotoxic or teratogenic activity nor on its effect on reproduction. Alphamethrin is weakly absorbed by the alimentary tract, respiratory tract and the skin. Due to its lipophil properties, in higher concentration alphamethrin accumulates in fatty tissue, in the skin, liver, kidneys, adrenal glands and ovaries. In humans, the rate of excretion depends on the dose – about 43% of the dose is eliminated with urine within the first 24 h in the form of free or conjugated cis-cyclopropanocarboxyl (cis-CPA) acid. Elimination with urine does not increase after administration of another dose. On the basis of the results of long-term exposure of dogs, the NOAEL value was accepted to be 90 mg of alphamethrin/kg of fodder (equivalent of about 2.25 mg/kg b.w./24 h). It was converted to a dose of absorption by humans during 8 h exposure and MAC value was calculated with the application of three coefficients of uncertainty. The MAC value of 1 mg/m3 was suggested.
PL
(2-Metoksymetyloetoksy)propanol (eter metylowy glikolu dipropylenowego, DGME) jest cieczą o stosunkowo wysokiej temperaturze wrzenia, stosowaną jako rozpuszczalnik organiczny i półprodukt do syntezy chemicznej. Substancja ta odznacza się bardzo słabym działaniem toksycznym zarówno po podaniu jednorazowym, jak i powtarzanym. Efektami krytycznymi u ludzi i zwierząt są podrażnienia błon śluzowych, w tym górnych dróg oddechowych, a także depresja ośrodkowego układu nerwowego. Nie wykazano drażniącego działania tego związku na skórę oraz działania uczulającego. DGME nie działa embriotoksycznie, fetotoksycznie i teratogennie. Nie ma danych dotyczących genotoksycznego i kancerogennego działania tego związku. Wartość NDS obliczono na podstawie wyników doświadczeń na szczurach i królikach, w których wykazano działanie drażniące DGME i ustalono wartości: NOAEL równą 1200 mg/m3, NDS równą 240 mg/m3 i NDSCh równą 480 mg/m3. Zaproponowano również oznaczenie związku literą „I” oznaczającą substancje o działaniu drażniącym. Obecnie nie ma podstaw do zaproponowania wartości DSB dla DGME.
EN
(2-Methoxymethylethoxy)propanol (dipropylene glycol methyl ether, DGME) is a colourless liquid with low vapor pressure, an ethereal odour and bitter taste. DGME is used as a solvent for nitrocellulose, synthetic resins, perfume, cosmetics, and as a chemical intermediate. DGME is relatively low toxic in humans and laboratory animals. Irritation of the eyes and respiratory tract as well as depression of the central nervous system can be recognised as critical effects. No embriotoxic, fetotoxic, and teratogenic effects have been found in the toxicological studies. In the available literature no data have been found on the genotoxicity and carcinogenicity of DGME. On the basis of the no-observed-adverse-effect-level (NOAEL) for irritation effect obtained from experiments on rats and appropriate uncertainty factor the MAC value was calculated at 240 mg/m3. STEL value of 480 mg/m3 and irritant (I) notation are recommended.
PL
Propan jest bezbarwnym gazem, skrajnie łatwo palnym, otrzymywanym z niżej wrzących frakcji ropy naftowej lub gazu naturalnego. Jest stosowany jako gaz palny, często w mieszaninach z butanem. Propan jest przyczyną ostrych zatruć, które mogą być wynikiem awarii w miejscu pracy lub w warunkach domowych. Związek o dużych stężeniach ma mdły, duszący zapach i działa depresyjnie na OUN. Krótkotrwałe narażenie na propan o stężeniach poniżej 18 000 mg/m3 nie wywoływało żadnych skutków u ludzi, a narażenie na związek o stężeniu 180 000 mg/m3 powodowało u osób narażonych zawroty głowy. Oblanie skóry ciekłym propanem powodowało uszkodzenie skóry, które mogło prowadzić do powstania martwicy. Stwierdzono, na podstawie wyników badań nad toksycznością ostrą propanu, na który narażano świnki morskie, że dopiero związek o stężeniach 43 000 ÷ 52 000 mg/m3 powoduje wystąpienie nieregularnego oddechu – pierwszego skutku działania propanu, a działanie depresyjne na OUN stwierdzono po narażeniu na związek o stężeniu 90 000 mg/m3. U małp narażanych na propan o stężeniu 1350 mg/m3 w ciągu 90 dni nie stwierdzono żadnych zmian. W dostępnym piśmiennictwie nie znaleziono danych na temat rakotwórczego działania propanu, a wyniki badania działania mutagennego testem Ames’a dały wynik negatywny. Wchłanianie propanu odbywa się głównie w drogach oddechowych. Informacje o stężeniach tkankowych propanu u ludzi pochodzą z wyników badań pośmiertnych – największe stężenia stwierdzano w tkance tłuszczowej, mózgu, wątrobie, nerkach, płucach i we krwi. Propan może wydalać się z powietrzem wydechowym i z moczem. Propan jest związkiem, powodującym asfiksję (uduszenie), ponieważ wypiera tlen z powietrza, może także działać depresyjnie na OUN. Istniejące wartości dopuszczalnych stężeń propanu w powietrzu zostały ustalone na podstawie wyników badań na zwierzętach (propan wykazuje słabe działanie biologiczne) i założeniu, że wartość NDS dla gazów nie powinna przekraczać 10% niższego poziomu wybuchowego (LEL). W Niemczech i USA (OSHA i NIOSH) obowiązująca wartość normatywna propanu wynosi 1800 mg/m3. Autorzy niniejszej dokumentacji, korzystając również z powyższych przesłanek, proponują dla propanu przyjęcie wartości NDS równej 1800 mg/m3.
EN
Propane is a colourless, extremely flammable gas obtained from lower boiling-point fractions of crude oil, or natural gas. It is used as fuel gas, often in combination with butane. At high concentrations, propane has a vapid smell. Propane may cause acute poisoning as a result of emergencies in the workplace or at home. At high concentrations, it is asphyxiating and depressive to the central nervous system (CNS). Short-lasting exposure to propane at concentrations below 18 000 mg/m3 do not cause any effects in humans, while in people exposed to concentrations as high as 180 000 mg/m3 it may produce vertigo. Liquid propane splashed on the skin causes skin lesion which may lead to dermal necrosis. Acute toxicity tests on guinea pigs have shown that exposures to propane at 43 000  52 000 mg/m3 result in irregular breathing, which is the first symptom of propane poisoning, while the CNS depressing effect in exposed animals is observed at 90 000 mg/m3. No changes were noted in monkeys exposed for 90 days to propane at 1350 mg/m3. No data could be located in the available literature concerning the carcinogenic activity of propane, and the results of the Ames test were negative. Propane is absorbed primarily through the respiratory tract. Information on propane concentrations in human tissues comes from post-mortem examinations. Highest propane concentrations have been detected in adipose tissue, brain, liver, kidneys, lungs, and blood. Propane is removed from the system in exhaled air and urine. Propane is a chemical causing asphyxia, because it expels oxygen from the air; it may also show a depressive Current admissible values of propane concentrations in the ambient air are based on the results of animal tests (propane shows a weak biological activity), while assuming that MAC (TWA) values for gases should not exceed 10% of the lower explosion level (LEL). In Germany and the USA, the admissible level for propane is 1800 mg/m3. Considering also the data quoted above, the authors of this report suggest for propane a MAC (TWA) value of 1800 mg/m3.
PL
Octan izobutylu stosowany jest głównie jako rozpuszczalnik nitrocelulozy, pokostów, rozcieńczalników, laków i lakierów oraz środek zapachowy, składnik perfum, a także do produkcji farmaceutyków. Występuje także w przyrodzie w owocach (malinach, gruszkach, jabłkach i ananasach). Dane o produkcji octanu izobutylu są fragmentaryczne. W 1984 r. jego produkcja w USA wynosiła 38 tys. ton. Narażenie zawodowe na octan izobutylu występuje przez wdychanie i kontakt dermalny, podczas produkcji i stosowania tego związku. Nie ma danych w dostępnym piśmiennictwie, dotyczących działania toksycznego tego związku na ludzi. Na podstawie wyników badań na zwierzętach doświadczalnych stwierdzono, że octan izobutylu działa drażniąco na błony śluzowe oczu i górnych dróg oddechowych. Wykazano ponadto, że octan izobutylu o małych stężeniach ma słabsze działanie drażniące niż octan n-butylu. Związek ten w badaniach in vitro nie wykazywał działania mutagennego; brak jest danych o innych skutkach odległych jego działania. Za podstawę ustalenia wartości NDS octanu izobutylu można przyjąć wartość RD50 (respiratory dose 50) u myszy, która wynosi 3890 mg/m3. Przyjmuje się, że dla związków o działaniu drażniącym wartość NDS powinna wynosić od 1/10 do 1/100 RD50. Zgodnie z zaleceniami higienistów amerykańskich, według których wartość NDS powinna być równa 1/30 RD50, obliczono, że stężenie to powinno wynosił 130 mg/m3. Biorąc jednak pod uwagę, że wartość RD50 jest jedyną daną, pozwalającą na określenie wartości NDS, a także porównując istniejące wartości RD50 dla innych estrów kwasu octowego z ich ustalonymi wartościami NDS w Polsce, autorzy uważają, że tak obliczona wartość NDS dla octanu izobutylu jest zbyt mała. Proponujemy zatem, przez analogię do octanu n-bytulu (i w zgodzie z normatywami dla większości innych octanów o zbliżonej sile działania drażniącego), przyjęcie stężenia 200 mg/m3 za wartość NDS octanu izobutylu, a także stężenie 400 mg/m3 za wartość NDSCh na podstawie działania drażniącego związku. Nie ma podstaw do zaproponowania wartości DSB octanu izobutylu.
EN
Isobutyl acetate is mainly used as a solvent of nitrocellulose, oil varnishes, diluents, lakes and lacquers. Furthermore, it is used as an odorant, perfume component and in the production of drugs. It is also found in nature in fruit (raspberries, pears, apples, pineapples). Data on the production of isobutyl acetate are fragmentary. In 1984 its production in the USA was 38,000 ton. Occupational exposure to isobutyl acetate takes place through inhalation and dermal contact during the production and application of this compound. There are no data concerning toxic effect of this compound on humans. On the basis of the result of studies on laboratory animals, isobutyl acetate was found to have an irritating action on the eyes and the upper airways mucosa. Moreover, isobutyl acetate in small concentration demonstrated weaker irritating action than n-butyl acetate. In in vitro studies this compound did not show a mutagenic effect. There are no reports on other late outcome effects. The RD50 (respiratory dose 50) value in mice, which is 3,890 mg/m3 may be accepted as a base for establishing an isobutyl acetate MAC (TWA) value. It is assumed that for compounds with an irritating action, MAC (TWA) values should be from 1/10 to 1/100 RD50 According to the recommendations of American hygienists, who suggest that the MAC (TWA) value should be 1/30 RD50, it was calculated that this concentration should be 72 130 mg/m3. However, considering that RD50 value is the only one that makes it possible to determine a MAC (TWA) value and also comparing existing RD50 values for other acetic acid esters with their MAC (TWA) values in Poland, the authors think that the value calculated in such a way for isobutyl acetate is too low. Thus, we suggest accepting – by analogy to n-butyl acetate (and in accordance with standard values for the majority of other acetates of similar strength of irritating action) – 200 mg/m3 as a MAC (TWA) value for isobutyl acetate and 400 mg/m3 as a MAC (STEL) value of isobutyl acetate on the basis of the irritating action of the compound. There is no basis for establishing a BEI value for isobutyl acetate.
PL
Metylocykloheksanol*jest bezbarwną cieczą o aromatycznym zapachu, która występuje zazwyczaj jako mieszanina izomerów: o-, m- i p-metylocykloheksanolu. Metylocykloheksanol jest stosowany przede wszystkim jako rozpuszczalnik tłuszczów, żywic, wosków i lakierów. Wchodzi w skład mieszanek do produkcji mydeł i detergentów. Metylocykloheksanol wchłania się przez drogi oddechowe, z przewodu pokarmowego i przez skórę, a jego pary działają drażniąco na błony śluzowe oczu i górnych dróg oddechowych. Nieliczne dane, pochodzące z badań na zwierzętach, a także z obserwacji ludzi narażonych, wskazują, że metylocykloheksanol można scharakteryzować jako substancję o małej toksyczności ostrej, niezależnie od drogi podania. Niemniej jednak, opierając się na zaleceniach zawartych w rozporządzeniu ministra zdrowia i opieki społecznej z dnia 21.08.1997 r. i zawartej w tym rozporządzeniu klasyfikacji, metylocykloheksanol należy uznać za substancję szkodliwą (Xn) na podstawie wartości dawki LD50 dla szczura, wynoszącej 1660 mg/kg, czyli poniżej 2000 mg/kg. Jednorazowe dożołądkowe podanie królikom dużych dawek metylocykloheksanolu powodowało śmierć zwierząt, którą poprzedzały zaburzenia ośrodkowego układu nerwowego. Obserwowano ponadto martwicę narządów wewnętrznych oraz obrzęk i przekrwienie mózgu. Narażenie inhalacyjne królików na związek o dużym stężeniu (1073 ÷ 2363 mg/m3) może być przyczyną zgonu zwierząt i/lub powstawania zmian zwyrodnieniowych w mózgu, sercu, wątrobie i w nerkach. Natomiast związek o stężeniu 565 mg/m3 wywołuje tylko niewielkiego stopnia zmiany w wątrobie i nerkach i dlatego stężenie to przyjęto za wartość LOAEL. Wielokrotne podanie metylocykloheksanolu na skórę może spowodować takie uszkodzenia skóry, jak rumień i martwicę, a także wystąpienie skutków układowych, a nawet zgon zwierząt. Podstawą proponowanej wartości NDS metylocykloheksanolu jest jego działanie toksyczne na wątrobę i nerki u zwierząt doświadczalnych. W niniejszym opracowaniu zaproponowano wartość NDS metylocykloheksanolu, wynoszącą 70 mg/m3. Z uwagi na fakt, iż nie są dostępne dane ilościowe i jakościowe, dotyczące działania drażniącego związku, nie określa się wartości NDSCh metylocykloheksanolu.
EN
Methylcyclohexanol is a colorless liquid with an aromatic odor. It appears as a mixture of three isomers (orta, meta, para). Methylcyclohexanol is primarily used as a solvent for resins, oils, waxes, lacquers, and also as a component of mixtures used in manufacturing soap and detergents. Methylcyclohexanol can be absorbed into the body by inhalation of its vapors, by ingestion, and through the skin. Exposure to vapors may result in irritation of the ocular and upper respiratory mucous membranes. The LD50 for rats (oral) is 1660 mg/kg, what indicates that the substance is harmful. Limited data are available to estimate the toxicity of methylcyclohexanol for humans. In animal studies the lowest observed concentration which caused microscopic tissue changes in the liver and kidneys (LOAEL) was 565 mg/m3. The MAC (TWA) value of 70 mg/m3 was established on the basis of the LOAEL value (565 mg/m3) and relevant uncertainty factors; the MAC (STEL) value has not been established due to insufficient data.
PL
Bromowodór (HBr) jest bezbarwnym, niepalnym gazem o ostrym, drażniącym zapachu. Pod wpływem wilgoci z powietrza atmosferycznego tworzy kwas bromowodorowy i w tej postaci działa korodująco na metale. Bromowodór jest stosowany w syntezach organicznych do produkcji bromopochodnych jako czynnik redukujący, jako katalizator w kontrolowanych procesach oksydacyjno-alkilujących związków aromatycznych oraz do izomeryzacji dwuolefin. Kwas bromowodorowy znajduje zastosowanie także w lecznictwie weterynaryjnym. Narażenie pracowników może występować podczas produkcji oraz stosowania bromowodoru i kwasu bromowodorowego w przemyśle. Bromowodór powoduje podrażnienie chemiczne w miejscu kontaktu, a jego wynikiem jest działanie drażniące na skórę i błony śluzowe; bromowodór o większych stężeniach powoduje martwicę tkanek. Wyniki badań ludzi świadczą o braku drażniącego działania bromowodoru na śluzówkę nosa, gardła i oczu podczas trwającego kilka minut narażenia na pary bromowodoru o stężeniu 6,6 mg/m3. Bromowodór o stężeniu 9,9 mg/m3 podrażnił gardło jednej i nos także jednej z sześciu narażonych osób. Bromowodór o stężeniu 13,2 mg/m3 spowodował podrażnienie nosa u trzech i podrażnienie gardła u jednej z sześciu narażonych osób. Wszystkie osoby narażane na bromowodór o stężeniu 16,5 i 19,8 mg/m3 odczuwały podrażnienie nosa, a podrażnienie gardła jedna z sześciu narażonych osób, natomiast żadna z narażonych osób nie zgłaszała podrażnienia oczu. Wartość stężenia śmiertelnego (LC50) u szczurów po 60-minutowym narażeniu na bromowodór wynosi 9240 mg/m3, a u myszy – 2640 mg/m3. Narażenie szczurów na pary bromowodoru o stężeniu 4290 mg/m3 przez 30 min powodowało przed upływem 24 h śmierć 8% zwierząt oddychających przez nos i 19% oddychających przez pysk. Na podstawie wyników badań histopatologicznych wykazano zmiany spowodowane działaniem drażniącym substancji, ograniczone do układu oddechowego. Gdy porównano te zmiany z obserwowanymi przy analogicznym narażeniu na fluorowodór i chlorowodór, okazało się, że u zwierząt oddychających przez pysk zmiany martwicze nabłonka tchawicy oraz stan zapalny warstwy podśluzówkowej były największe po narażeniu na fluorowodór, słabsze po narażeniu na chlorowodór i najsłabsze po narażeniu na bromowodór. Zmiany patologiczne w płucach także były trochę bardziej zaznaczone po narażeniu na fluorowodór i chlorowodór niż na bromowodór. Proponuje się nieprzyjmowanie wartości najwyższego dopuszczalnego stężenia oraz najwyższego dopuszczalnego stężenia chwilowego bromowodoru, a jedynie przyjęcie wartości najwyższego dopuszczalnego stężenia pułapowego o wielkości 6,5 mg/m3. Proponowana wartość NDSP jest oparta na wynikach badań nad działaniem toksycznym HBr na ludzi, wskazujących, że jest tolerowane kilkuminutowe narażenie na 2 ppm (6,6 mg/m3), a wraz ze wzrastającym stężeniem HBr dochodzi do podrażnienia przede wszystkim błony śluzowej nosa i dróg oddechowych, lecz nie oczu. Stężenie 3 ppm (9,9 mg/m3) bromowodoru spowodowało podrażnienie błony śluzowej nosa i górnych dróg oddechowych (lecz nie oczu) u jednego z sześciu badanych ochotników. Proponowany normatyw ma zabezpieczyć pracowników przed działaniem drażniącym bromowodoru.
EN
Hydrogen bromide is a eolorless, eorrosive, nonflammable gas with an aerid odor. An odor threshold of 6 mg/m3 has been reported. Hydrogen bromide gas and hydrobromie aeid may be used in organie synthesis, for dissolving eertain ores, in the manufaeture of bromides, and as an alkylation eatalyst. Aeute toxieity data indieate that hydro gen bromide, with a 60-minute LC50 of 9240 mg/m3 was somewhat more toxic to the rat than hydro gen ehloride. The Intersectoral Commission considers hydro gen bromide a primary irritant and believes that primary irritants with no known chronic effects should have Ceilings rather than MAC(TWA) and MAC(STEL) values. Therefore, a Ceiling of 6,5 mg/m3 is recommended for hydro gen bromide, based on the results of controlled exposures of human volunteers. It is anticipated that maintenance of workplace air concentrations below the Ceiling should minimize even transient irritation and eomplaints. There is no implication that brief, small excursions above the 9,9 mg/m3 ceiling are life-threatening or have the potential for creating permanent harm. Sufficient data were available to recommend "I" notation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.