In this study, we introduce the λ-analogue of Lah numbers and λ-analogue of r-Lah numbers in the view of degenerate version, respectively. We investigate their properties including recurrence relation and several identities of λ-analogue of Lah numbers arising from degenerate differential operators. Using these new identities, we study the normal ordering of degenerate integral power of the number operator in terms of boson operators, which is represented by means of λ-analogue of Lah numbers and λ-analogue of r-Lah numbers, respectively.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
It is known that the Stirling numbers of the second kind are related to normal ordering in the Weyl algebra, while the unsigned Stirling numbers of the first kind are related to normal ordering in the shift algebra. Recently, Kim-Kim introduced a λ-analogue of the unsigned Stirling numbers of the first kind and that of the r-Stirling numbers of the first kind. In this article, we introduce a λ-analogue of the shift algebra (called λ-shift algebra) and investigate normal ordering in the λ-shift algebra. From the normal ordering in the λ-shift algebra, we derive some identities about the λ-analogue of the unsigned Stirling numbers of the first kind.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.