Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nonlinear thermal radiation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, we have studied the effect of heat source/sink on unsteady Casson nanofluid past a stretching surface with mixed convection inclined magnetic field and nonlinear thermal radiation numerically. Brownian and thermophoresis effects are studied in this nanofluid model (Buongiorno’s). The governing momentum, energy, and concentration equations are PDEs that are changed into ordinary differential equations by means of suitable transformations. The fourth-order R-K method with shooting technique is adapted to yield the results of this work. The velocity, thermal, and concentration profiles are discussed with the several physical parameters. Also, skin friction, the Nusselt number, and the Sherwood number are examined with the help of the table. It is found that the enhancing value of the unsteady parameter and heat sink parameters reduce the fluid temperature, and the enhancing value of the Casson parameter and heat source parameters increase the fluid temperature. The increasing value of the inclined magnetic field parameter enhances the thermal boundary layer thickness.
EN
The presence of more than one solute diffused in fluid mixtures is very often requested for discussing the natural phenomena such as transportation of contaminants, underground water, acid rain and so on. In the paper, the effect of nonlinear thermal radiation on triple diffusive convective boundary layer flow of Casson nanofluid along a horizontal plate is theoretically investigated. Similarity transformations are utilized to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameters on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, modified Dufour parameter and Dufour solutal Lewis number enhances the temperature and solutal concentration profiles respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.