Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nonlinear material
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The non-linear analysis of hollow-core concrete slabs requires the use of advanced numerical techniques, proper constitutive models both for concrete and steel as well as particular computational skills. If prestressing, cracking, crack opening, material softening, etc. are also to be taken into account, then the computational task can far exceed the capabilities of an ordinary engineer. In order for the calculations to be carried out in a traditional design office, simplified calculation methods are needed. They should be based on the linear finite element (FE) method with a simple approach that takes into account material nonlinearities. In this paper the simplified analysis of hollow-core slabs based on the generalized nonlinear constitutive law is presented. In the proposed method a simple decomposition of the traditional iterative linear finite element analysis and the non-linear algebraic analysis of the plate cross-section is used. Through independent analysis of the plate cross-section in different deformation states, a degraded plate stiffness can be obtained, which allows for iterative update of displacements and rotations in the nodes of the FE model. Which in turn allows to update the deformation state and then correct translations and rotations in the nodes again. The results obtained from the full detailed 3D nonlinear FEM model and from the proposed approach are compared for different slab cross-sections. The obtained results from both models are consistent.
PL
Nieliniowa analiza kanałowych płyt stropowych wymaga zastosowania zaawansowanych technik numerycznych, odpowiednich modeli konstytutywnych zarówno dla betonu jak i stali oraz konieczności posiadania odpowiednich umiejętności obliczeniowych. W przypadku nieliniowych analiz należy wziąć pod uwagę również sprężenie, pękanie, rysy, zmiękczenie materiału itp., co powoduje że zadanie obliczeniowe może znacznie przekroczyć możliwości zwykłego inżyniera. W celu wykonania obliczeń w tradycyjnym biurze projektowym potrzebne są uproszczone metody obliczeń. Najlepiej w oparciu o liniową metodę elementów skończonych (MES) z prostym podejściem uwzględniającym nieliniowości materiałowe. W artykule przedstawiono uproszczoną analizę kanałowych płyt w oparciu o uogólnione prawo konstytutywne. W proponowanej metodzie prosty rozkład tradycyjnej iteracyjnej liniowej analizy elementów skończonych oraz nieliniowej analizy algebraicznej przekroju poprzecznego płyty. Poprzez niezależną analizę przekroju płyty w różnych stanach odkształcenia, można uzyskać zdegradowaną sztywność płyty, co pozwala na iteracyjną aktualizację przemieszczeń oraz obrotów w węzłach modelu MES. To z kolei pozwala zaktualizować stan deformacji, a następnie skorygować translacje i obroty w węzach jeszcze raz. Proponowana tutaj metoda ma zastosowanie do analizy betonu zbrojonego cięgnami oraz sprężonych płyt kanałowych. Wyniki uzyskane z pełnego szczegółowego nieliniowego modelu 3D MES oraz z proponowanego podejścia są porównywane dla różnych przekrojów płyt. Uzyskane wyniki dają dobrą zbieżność.
2
Content available remote Investigation of structural performance of historical Amasya Hundi Hatun Bridge
EN
Bridges have been built by many civilizations throughout history to connect the two banks of a river. There have been numerous historical bridges built in Anatolian geography because the area has served as a bridge to various civilizations. This study performed a structural evaluation of the Hundi Hatun Bridge in Amasya, Turkey. First, a 3D model of the bridge was created in a digital environment, and then static and dynamic analyses were performed with software using the ANSYS Workbench finite element method. The bridge demonstrated sufficient dimensions under static loads and in the modal analysis, although the arches were subject to translational movement in the flow direction of the river. In addition, linear and nonlinear material models were used to perform dynamic analyses, including bridge seismic analyses. The linear material model indicated that the bridge is safe, while the nonlinear material model revealed that damage may occur, especially at the abutments and peak regions of the bridge. Moreover, the bridge arch flatness was determined to be a very important parameter. The results of this study can be used to guide future restoration efforts.
EN
The paper presents a modified finite element method for nonlinear analysis of 2D beam structures. To take into account the influence of the shear flexibility, a Timoshenko beam element was adopted. The algorithm proposed enables using complex material laws without the need of implementing advanced constitutive models in finite element routines. The method is easy to implement in commonly available CAE software for linear analysis of beam structures. It allows to extend the functionality of these programs with material nonlinearities. By using the structure deformations, computed from the nodal displacements, and the presented here generalized nonlinear constitutive law, it is possible to iteratively reduce the bending, tensile and shear stiffnesses of the structures. By applying a beam model with a multi layered cross-section and generalized stresses and strains to obtain a representative constitutive law, it is easy to model not only the complex multi-material cross-sections, but also the advanced nonlinear constitutive laws (e.g. material softening in tension). The proposed method was implemented in the MATLAB environment, its performance was shown on the several numerical examples. The cross-sections such us a steel I-beam and a steel I-beam with a concrete encasement for different slenderness ratios were considered here. To verify the accuracy of the computations, all results are compared with the ones received from a commercial CAE software. The comparison reveals a good correlation between the reference model and the method proposed.
PL
W artykule przedstawiono zmodyfikowaną metodę elementów skończonych do nieliniowej analizy płaskich konstrukcji belkowych. Aby wziąć pod uwagę wpływ podatności na ścinanie, zastosowano belkowy element Timoshenki. Zaproponowany algorytm umożliwia stosowanie złożonych praw materiałowych bez konieczności implementacji zaawansowanych modeli konstytutywnych w procedurach elementów skończonych. Metoda jest łatwa do wdrożenia w powszechnie dostępnym oprogramowaniu CAE do liniowej analizy konstrukcji belkowych. Pozwala to na rozszerzenie funkcjonalności tych programów o nieliniowości materiałowe. Wykorzystując odkształcenia konstrukcji, obliczone z przemieszczeń węzłów oraz przedstawione tutaj uogólnione nieliniowe prawo konstytutywne, możliwe jest iteracyjne zmniejszanie sztywności konstrukcji na zginanie, ściskanie/rozciąganie i ścinanie. Stosując model belkowy z przekrojem wielowarstwowym oraz uogólnionymi odkształceniami i naprężeniami w celu uzyskania reprezentatywnego prawa konstytutywnego, łatwo jest modelować nie tylko złożone przekroje wielomateriałowe, ale także zaawansowane nieliniowe prawa konstytutywne (np. osłabienie materiału przy rozciąganiu). Zaproponowana metoda została zaimplementowana w środowisku MATLAB, a jej działanie pokazano na kilku przykładach numerycznych. Przeanalizowano przekroje dwuteownika stalowego oraz dwuteownika stalowego obetonowanego dla różnych wartości smukłości. Aby zweryfikować dokładność obliczeń, wyniki porównano z wartościami otrzymanymi z komercyjnego oprogramowania CAE. Porównanie pokazało dobrą korelację między modelem referencyjnym a proponowaną metodą.
4
Content available remote Response surfaces in the numerical homogenization of non-linear porous materials
EN
The paper deals with the numerical homogenization of structures made of non-linear porous material. Material non-linearity causes a significant increase in computational costs for numerical homogenization procedure. An application of the response surface methodology allows a significant reduction of the computational effort providing good approximation precision. Finite element method commercial software is employed to solve the boundary-value problem in both scales. Due to the significant reduction in computing time, the proposed attitude may be applied for different optimization and identification tasks for inhomogeneous, non-linear media, especially with the use of global optimization methods.
EN
A method based on energy is a very useful tool for description of mechanical properties of materials. In the current paper, on the base of geometrical interpretation of a deformation process, the strain energy density function for isotropic nonlinear materials has been constructed. On account of hydrostatic interpretation of the volumetric deformation, the elastic part of energy has been extracted. The initiation of the damage process due to plastic flow of the material under plane stress has been determined and the stability conditions have been formulated by using in the stability analysis the strain energy density function in addition to Sylvester’s theorem and assumption of zero volume change during pure plastic deformations. This concept is an original part of the work and continuation of the investigations previously carried out by Wegner and Kurpisz. The theoretical investigations have been illustrated on the example of aluminium.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.