Motivated by the two-step directional Newton method considered by Argyros and Hilout (2010) for approximating a zero X* of a differentiable function F defined on a convex set D of a Hilbert space H, we consider a two-step Newton–Lavrentiev method (TSNLM) for obtaining an approximate solution to the nonlinear ill-posed operator equation F(x)=f, where F : D(F) ⊆ X → X is a nonlinear monotone operator defined on a real Hilbert space X. It is assumed that F(∧x)=f and that the only available data are fδ with ||f- fδ||≤δ. We prove that the TSNLM converges cubically to a solution of the equation F(x)+α(x-x0)= fδ (such solution is an approximation of ∧x) where x0 is the initial guess. Under a general source condition on x0-∧x, we derive order optimal error bounds by choosing the regularization parameter α according to the balancing principle considered by Perverzev and Schock (2005). The computational results provided endorse the reliability and effectiveness of our method.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.