Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nonlinear free vibration
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A point mass added to a plate may have a significant effect on its linear and nonlinear dynamics, including frequencies, mode shapes and the forced response to external loading. In the present paper, a simply supported clamped simply supported clamped rectangular plate (SCSCRP) carrying a point mass is examined. The expressions for the kinetic, linear and non-linear strain energies are derived by taking into account the effect of the added mass on the kinetic energy and the effect of the membrane forces induced by the non-linearity on the strain energy. The discretization of these expressions makes the mass tensor, the linear and non-linear rigidity tensors appear in a non-linear algebraic multimode amplitude equation, the iterative solution of which permit to obtain, in the neighborhood of the first non-linear mode, the basic SCSCRP function amplitude dependent contribution coefficients. Nonlinear frequency response functions have been obtained for the first time, based on an iterative numerical solution in each case of the associated complete set of nonlinear algebraic equations. Such new results are useful for a better qualitative understanding allowing an optimal dynamic design of the rectangular plates with added masses.
EN
Continuum models generalized by fractional calculus are used in different mechanical problems. In this paper, by using the conformable fractional derivative (CFD) definition, a general form of Eringen non-local theory as a fractional non-local model (FNM) is formulated. It is then used to study the non-linear free vibration of a functional graded material (FGM) nano-beam in the presence of von-Kármán non-linearity. A numerical solution is obtained via Galerkin and multiple scale methods and effects of the integer and non-integer (fractional) order of stress gradient (in the non-local stress-strain relation) on the ratio of the non-local non-linear natural frequency to classical non-linear natural frequency of simply-supported (S-S) and clamped-free (C-F) FGM nano-beams are presented.
EN
In this paper, nonlinear free vibration of nanobeams with various end conditions is studied using the nonlocal elasticity within the frame work of Euler-Bernoulli theory with von K´arm´an nonlinearity. The equation of motion is obtained and the exact solution is established using elliptic integrals. Two comparison studies are carried out to demonstrate accuracy and applicability of the elliptic integrals method for nonlocal nonlinear free vibration analysis of nanobeams. It is observed that the phase plane diagrams of nanobeams in the presence of the small scale effect are symmetric ellipses, and consideration the small scale effect decreases the area of the diagram.
EN
In this paper, nonlinear free vibration analysis of micro-beams resting on the viscoelastic foundation is investigated by the use of the modified couple stress theory, which is able to capture the size effects for structures in micron and sub-micron scales. To this aim, the governing equation of motion and the boundary conditions are derived using the Euler–Bernoulli beam and the Hamilton’s principle. The Galerkin method is employed to solve the governing nonlinear differential equation and obtain the frequency-amplitude algebraic equation. Finally, the effects of different parameters, such as the mode number, aspect ratio of length to height, the normalized length scale parameter and foundation parameters on the natural frequency-amplitude curves of doubly simply supported beams are studied.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.