Nonlinear PDEs are systematically solved by the decomposition method of Adomian for general boundary conditions described by boundary operator equations. In the present case, the solution of the nonlinear Klein-Gordon equation has been considered as an illustration of the decomposition method of Adomian.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Newton's iteration is studied for the numerical solution of an elliptic PDE with nonlinear boundary conditions. At each iteration of Newton's method, a conjugate gradient based decomposition method is applied to the matrix of the linearized system. The decomposition is such that all the remaining linear systems have the same constant matrix. Numerical results confirm the savings with respect to the computational cost, compared with the classical Newton method with factorization at each step.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.