Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  non-uniform temperature field
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The non-uniformity of temperature field distribution of long-span steel structure is proportional to the intensity of solar radiation. Based on the background of Guangzhou Baiyun Station large-span complex steel roof structure, this paper studies the non-uniform temperature field distribution of large-span steel structure under the Summer Solstice daily radiation-thermal-fluid coupling action based on Star-ccm+ finite element software, and uses Spa2000 software to analyze the stress and deformation of steel roof under temperature action. Combined with the on-site temperature monitoring, the maximum difference with the measured value is 2.5°C compared with the numerical simulation results, which verifies the validity of the finite element simulation. The results show that: from 8:00, with the increase of solar altitude angle, the intensity of solar radiation increases, the temperature rises, and the temperature distribution of large-span steel structure becomes more and more non-uniform. From14:00 to18:00, the solar radiation weakens, and the temperature distribution tends to be uniform. Finally, reasonable construction suggestions and measures are proposed to reduce the adverse effects of temperature effects, which can provide theoretical references for the safe construction and normal operation of large-span steel structures located in the subtropics.
2
Content available remote Hydroforming process of thin-walled tubular components with multiple local bulges
EN
In the hydroforming process of a thin-walled tubular component with multiple local bulges, the bulge in the middle position is almost impossible to be formed with a conventional one-step hydroforming process because of the difficult axial feeding. To solve this problem, a novel method is proposed by preforming wrinkles using selective induction heating at different positions of tube blank to aggregate materials in advance for the subsequent hydroforming of tubular component with multiple local bulges. In this paper, the wrinkling behavior of 5052 aluminum alloy tube blank under different conditions and the deformation behavior of the wrinkled tube blank in subsequent hydroforming process of tubular component with three bulges are analyzed. It is shown that the existence of wrinkles is beneficial to increase the ultimate expansion ratio of the tube blank. Moreover, the instability behavior of multiple wrinkles on 5052 aluminum alloy tube blanks under different conditions was investigated by experiments. The process parameters for prefabricating two or three wrinkles, including temperature, spacing between wrinkles, and internal pressure, were determined through a detailed experimental investigation. Finally, the defects including splitting and undercut that occur in the hydroforming of tubular component with three bulges are analyzed, and the thin-walled tubular component with three bulges was hydroformed successfully using a wrinkled tube blank obtained under the process parameters of 250 °C, 4 mm, 5.5 MPa/350 °C, 10 mm, 2 MPa/400 °C, 6 mm, 1.33 MPa. These results provide insights for the manufacturing of tubular component with multiple local bulges from hard-to-form materials.
EN
The study shows the direct relationship between the temperature field and the parallel changes that are taking place in backscattered ultrasonic signals from the breast tissue in vivo when heated to the temperature of approximately 42 deg. C. The non-uniform temperature field inside the heating tissue was determined by the numerical model using FEM. It is shown that the spatial distribution of intensities of the backscattered signals coincides with the temperature distribution field predicted by the numerical model in some areas. The result indicates the possibility of the indirect measurement of the temperature rise in the breast tissue in vivo by measuring the intensity variations of the ultrasound echo.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.