Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  non-legislated emissions
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Biofuels represent one of the alternatives to obtain the CO2 - neutral propulsion of IC-engines. Butanol, which can be produced from biomass, is considered and was investigated in the last years due to the very advantageous characteristics of this alternative fuel. Butanol can be easily and irreversibly blended both with light (gasoline) and heavier (diesel) fuels. Comparing with ethanol it has the advantages of: higher calorific value, lower hygroscopicity and lower corrosivity. It can replace the aviation fuels. This paper presents the emission results obtained on two diesel passenger cars with different technology (Euro 2 and Euro 6c) and with addition of butanol to diesel fuel, as a part of the research project DiBut (diesel and butanol). Interesting results are given about some non-legislated (non-regulated) components, acetaldehyde (MeCHO) and formaldehyde (HCHO) and about the PN-emissions with/without DPF.
2
Content available NOX-reduction on HD-vehicles-low cost quality check
EN
The NOx reduction of recent HD-vehicle is performed mostly by means of the selective catalytic reduction SCR. There are some manufactures and some applications of SCR as retrofit systems (mostly for the low emission zones LEZ and in combination with a DPF). In charge of Swiss authorities AFHB investigated several SCR-systems, or (DPF+SCR)-systems on HD-vehicles and proposed a simplified quality test procedure of those systems. This procedure can especially be useful for the admission of retrofit systems but it can also be helpful for the quality check of OEM-systems. In the present paper the test procedures will be described and some examples of specific results will be presented. As general conclusions it can be stated: – the foundations for the quality verification procedures of SCR-systems are established, – the SCR-systems are not active at lower temperatures < 200°C, – SCR-testing on vehicle is a simple & low-cost tool for quality check, – the overall average NOx reduction rate depends on the operating profile of the vehicle – for low-load, for cold operation and for interrupted operation (HEV) there are lower NOx reduction efficiencies.
EN
The fatty acid methyl esters (FAME's) - in Europe mostly RME *) (Rapeseed methyl ester; Abbreviations see at the end of this paper) - are used in several countries as alternative biogenic Diesel fuels in various blending ratios with fossil fuels (Bxx). Questions arise often about the influences of these biocomponents on the modern exhaust after-treatment systems and especially on the regeneration of Diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: - passive regenerations: DOC + CSF; CSF alone, - active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of limited and unlimited emission components (nanoparticles & FTIR) was conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot. This is due to the lower PM-emissions of the engine, as well as to the higher reactivity and higher SOF-portion of the particle mass from RME. With the passive regeneration system with stronger catalytic activity (DOC + CSF) there is a stronger NO2-production with B100 and due to the NO2-supported oxidation of PM the balance point temperature is approx. 20 centigrade lower, than with B0. For the active regenerations the time courses of emissions and temperatures are closely connected with the chosen regeneration strategy - switching, timing and intensity (of burner, or fuel aerosol generator). A higher portion of biocomponent causes usually a stronger break-down of the instantaneous DPF filtration efficiency during the regeneration procedure - this is an effect of stronger artifact of spontaneous condensation after DPF. In summary there is no negative short term effect of bio-blended-fuels on the investigated regeneration procedures. Some recommendations for a successful long term operation, basing on other works and literature are given at the end of the paper.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.