Schrodinger operators with nonlocal δ-interaction are studied with the use of the Lax-Phillips scattering theory methods. The condition of applicability of the Lax-Phillips approach in terms of non-cyclic functions is established. Two formulas for the S-matrix are obtained. The first one deals with the Krein-Naimark resolvent formula and the Weyl-Titchmarsh function, whereas the second one is based on modified reflection and transmission coefficients. The S-matrix S(z) is analytical in the lower half-plane C- when the Schrodinger operator with nonlocal δ-interaction is positive self-adjoint. Otherwise, S(z) is a meromorphic matrix-valued function in C- and its properties are closely related to the properties of the corresponding Schrodinger operator. Examples of S-matrices are given.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.